Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A surface-bound molecule that undergoes optically biased Brownian rotation

Abstract

Developing molecular systems with functions analogous to those of macroscopic machine components, such as rotors1,2, gyroscopes3 and valves4, is a long-standing goal of nanotechnology. However, macroscopic analogies go only so far in predicting function in nanoscale environments, where friction dominates over inertia5,6. In some instances, ratchet mechanisms have been used to bias the ever-present random, thermally driven (Brownian) motion and drive molecular diffusion in desired directions7. Here, we visualize the motions of surface-bound molecular rotors using defocused fluorescence imaging, and observe the transition from hindered to free Brownian rotation by tuning medium viscosity. We show that the otherwise random rotations can be biased by the polarization of the excitation light field, even though the associated optical torque is insufficient to overcome thermal fluctuations. The biased rotation is attributed instead to a fluctuating-friction mechanism8,9 in which photoexcitation of the rotor strongly inhibits its diffusion rate.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and ideal orientation at an interface of molecular device components 1–3.
Figure 2: Binding of 1 with perpendicular orientation to a glass surface.
Figure 3: Viscosity dependence and optical bias of rotational diffusion of rotors 2 and 3.

Similar content being viewed by others

References

  1. Van Delden, R. A. et al. Unidirectional molecular motor on a gold surface. Nature 437, 1337–1340 (2005).

    Article  CAS  Google Scholar 

  2. Perera, U. G. E. et al. Controlled clockwise and anticlockwise rotational switching of a molecular motor. Nature Nanotech. 8, 46–51 (2013).

    Article  CAS  Google Scholar 

  3. Vogelsberg, C. S. & Garcia-Garibay, M. A. Crystalline molecular machines: function, phase order, dimensionality, and composition. Chem. Soc. Rev. 41, 1892–1910 (2012).

    Article  CAS  Google Scholar 

  4. Nguyen, T. et al. A reversible molecular valve. Proc. Natl Acad. Sci. USA 102, 10029–10034 (2005).

    Article  CAS  Google Scholar 

  5. Browne, W. R. & Feringa, B. L. Making molecular machines work. Nature Nanotech. 1, 25–35 (2006).

    Article  CAS  Google Scholar 

  6. Astumian, R. D. Thermodynamics and kinetics of a Brownian motor. Science 276, 917–922 (1997).

    Article  CAS  Google Scholar 

  7. Barrell, M. J., Campaña, A. G., von Delius, M., Geertsema, E. M. & Leigh, D. A. Light-driven transport of a molecular walker in either direction along a molecular track. Angew. Chem. Int. Ed. 50, 285–290 (2011).

    Article  CAS  Google Scholar 

  8. Jánossy, I. Optical reorientation in dye-doped liquid crystals. J. Nonlin. Opt. Phys. Mater. 8, 361–377 (1999).

    Article  Google Scholar 

  9. Kreuzer, M., Benkler, E., Paparo, D., Casillo, G. & Marrucci, L. Molecular orientation by photoinduced modulation of rotational mobility. Phys. Rev. E 68, 011701 (2003).

    Article  CAS  Google Scholar 

  10. Michl, J. & Sykes, E. C. H. Molecular rotors and motors: recent advances and future challenges. ACS Nano 3, 1042–1048 (2009).

    Article  CAS  Google Scholar 

  11. Coronado, E., Gaviña, P. & Tatay, S. Catenanes and threaded systems: from solution to surfaces. Chem. Soc. Rev. 38, 1674–1689 (2009).

    Article  CAS  Google Scholar 

  12. Balzani, V., Credi, A. & Venturi, M. Molecular machines working on surfaces and at interfaces. ChemPhysChem 9, 202–220 (2008).

    Article  CAS  Google Scholar 

  13. Toyota, S. Rotational isomerism involving acetylene carbon. Chem. Rev. 110, 5398–5424 (2010).

    Article  CAS  Google Scholar 

  14. Böhmer, M. & Enderlein, J. Orientation imaging of single molecules by wide-field epifluorescence microscopy. J. Opt. Soc. Am. B 20, 554–559 (2003).

    Article  Google Scholar 

  15. Deres, A. et al. The origin of heterogeneity of polymer dynamics near the glass temperature as probed by defocused imaging. Macromolecules 44, 9703–9709 (2011).

    Article  CAS  Google Scholar 

  16. Uji-i, H. et al. Visualizing spatial and temporal heterogeneity of single molecule rotational diffusion in a glassy polymer by defocused wide-field imaging. Polymer 47, 2511–2518 (2006).

    Article  CAS  Google Scholar 

  17. Lu, C-Y. & Vanden Bout, D. A. Effect of finite trajectory length on the correlation function analysis of single molecule data. J. Chem. Phys. 125, 124701 (2006).

    Article  Google Scholar 

  18. Mackowiak, S. A. & Kaufman, L. J. When the heterogeneous appears homogeneous: discrepant measures of heterogeneity in single-molecule observables. J. Phys. Chem. Lett. 2, 438–442 (2011).

    Article  CAS  Google Scholar 

  19. Wakelin, S. & Bagshaw, R. A prism combination for near isotropic fluorescence excitation by total internal reflection. J. Microsc. 209, 143–148 (2003).

    Article  CAS  Google Scholar 

  20. Osborne, M. A., Balasubramaniam, S., Furey, W. S. & Klenerman, D. Optically biased diffusion of single molecules studied by confocal fluorescence microscopy. J. Phys. Chem. B 102, 3160–3167 (1998).

    Article  CAS  Google Scholar 

  21. Manzo, C., Paparo, D. & Marrucci, L. Photoinduced random molecular reorientation by non-radiative energy relaxation: an experimental test. Phys. Rev. E 70, 051702 (2004).

    Article  CAS  Google Scholar 

  22. Flors, C. et al. Energy and electron transfer in ethynylene bridged perylene diimide multichromophores. J. Phys. Chem. C 111, 4861–4870 (2007).

    Article  CAS  Google Scholar 

  23. Li, C. et al. Rainbow perylene monoimides: easy control of optical properties. Chem. Eur. J. 15, 878–884 (2009).

    Article  CAS  Google Scholar 

  24. Andrew, T. L. & Swager, T. M. Thermally polymerized rylene nanoparticles. Macromolecules 44, 2276–2281 (2011).

    Article  CAS  Google Scholar 

  25. Margineanu, A. et al. Visualization of membrane rafts using a perylene monoimide derivative and fluorescence lifetime imaging. Biophys. J. 93, 2877–2891 (2007).

    Article  CAS  Google Scholar 

  26. Okuyama, O., Cockett, M. C. R. & Kimura, K. Observation of torsional motion in the ground-state cation of jet-cooled tolane by two-color threshold photoelectron spectroscopy. J. Chem. Phys. 97, 1649–1654 (1992).

    Article  CAS  Google Scholar 

  27. Daniels, C. R., Reznik, C. & Landes, C. F. Dye diffusion at surfaces: charge matters. Langmuir 26, 4807–4812 (2010).

    Article  CAS  Google Scholar 

  28. Kirmaier, C. et al. Excited-state photodynamics of perylene-porphyrin dyads. 5. Tuning light-harvesting characteristics via perylene substituents, connection motif, and three-dimensional architecture. J. Phys. Chem. B 114, 14249–14264 (2010).

    Article  CAS  Google Scholar 

  29. Karageorgiev, P. et al. From anisotropic photo-fluidity towards nanomanipulation in the optical near-field. Nature Mater. 4, 699–703 (2005).

    Article  CAS  Google Scholar 

  30. Nishimura, D. et al. Single-molecule imaging of rotaxanes immobilized on glass substrates: observation of rotary movement. Angew. Chem. Int. Ed. 120, 6077–6079 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013/ERC grant agreement 291593 FLUOROCODE), from the Flemish government in the form of a long-term structural funding ‘Methusalem’ grant (METH/08/04 CASAS), from the ‘Fonds voor Wetenschapplijk Onderzoek Vlaanderen’ (FWO grants G0413.10, G0697.11 and G0197.11), from the Hercules Foundation (HER/08/021) and from the Federal Science Policy of Belgium (IAP-PAI P7/05 ‘Functional Supramolecular Systems’) and the UNIK research initiative of the Danish Ministry of Science, Technology and Innovation (grant 09-065274).

Author information

Authors and Affiliations

Authors

Contributions

K.M., A.H., J.H. and F.D.S. devised the project. S.M., H.N., C.L. and A.B. synthesized the molecules. J.A.H., A.D., S.R., H.U. and T.V. carried out optical measurements. J.E. and H.U. wrote the analysis software. J.A.H. analysed the data and wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Hiroshi Uji-i or Johan Hofkens.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 1430 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hutchison, J., Uji-i, H., Deres, A. et al. A surface-bound molecule that undergoes optically biased Brownian rotation. Nature Nanotech 9, 131–136 (2014). https://doi.org/10.1038/nnano.2013.285

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.285

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing