Silicon nanostructures for photonics and photovoltaics

Abstract

Silicon has long been established as the material of choice for the microelectronics industry. This is not yet true in photonics, where the limited degrees of freedom in material design combined with the indirect bandgap are a major constraint. Recent developments, especially those enabled by nanoscale engineering of the electronic and photonic properties, are starting to change the picture, and some silicon nanostructures now approach or even exceed the performance of equivalent direct-bandgap materials. Focusing on two application areas, namely communications and photovoltaics, we review recent progress in silicon nanocrystals, nanowires and photonic crystals as key examples of functional nanostructures. We assess the state of the art in each field and highlight the challenges that need to be overcome to make silicon a truly high-performing photonic material.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Electrically driven devices based on nanocrystals and nanowires.
Figure 2: Nonlinear optics in silicon photonic crystals.
Figure 3: Enhanced light emission from silicon photonic crystals.
Figure 4: Photon cutting and pasting by Si nanocrystals.
Figure 5: Supercell binary grating for light trapping.

References

  1. 1

    Claps, R. et al. Observation of stimulated Raman scattering in silicon waveguides. Opt. Express 11, 1731–1739 (2003).

  2. 2

    Rong, H. et al. An all-silicon Raman laser. Nature 433, 725–728 (2005).

  3. 3

    Rong, H. et al. Low-threshold continuous-wave Raman silicon laser. Nature Photon. 1, 232–237 (2007).

  4. 4

    Takahashi, Y. et al. A micrometre-scale Raman silicon laser with a microwatt threshold. Nature 498, 470–474 (2013).

  5. 5

    Liu, A. et al. A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor. Nature 427, 615–618 (2004).

  6. 6

    Reed, G. T., Mashanovich, G. Z., Gardes, F. Y. & Thomson, D. J. Silicon optical modulators. Nature Photon. 4, 518–526 (2010).

  7. 7

    Miller, D. A. B. Device requirements for optical interconnects to silicon chips. Proc. IEEE 97, 1166 (2009).

  8. 8

    Notomi, M. et al. Optical bistable switching action of Si high-Q photonic-crystal nanocavities. Opt. Express 13, 2678–2687 (2005).

  9. 9

    Galli, M. et al. Low-power continuous-wave harmonic generation in silicon photonic crystal cavities. Opt. Express 18, 26613–26624 (2010).

  10. 10

    Matsuo, S. et al. 20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption. Opt. Express 19, 2242–2250 (2011).

  11. 11

    Debnath, K. et al. Cascaded modulator architecture for WDM applications. Opt. Express 20, 27420–27428 (2012).

  12. 12

    Fujita, M., Takahashi, S., Tanaka, Y., Asano, T. & Noda, S. Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals. Science 308, 1296–1298 (2005).

  13. 13

    Weber, J. & Alonso, M. I. Near-band-gap photoluminescence of Si–Ge alloys. Phys. Rev. B 40, 5683–5693 (1989).

  14. 14

    Kenyon, A. J. Erbium in silicon. Semicond. Sci. Technol. 20, R65–R84 (2005).

  15. 15

    Vinh, N. Q., Ha, N. N. & Gregorkiewicz, T. Photonic properties of Er-doped crystalline silicon. Proc. IEEE 97, Spec. Issue (7) on Silicon Photonics, 1269–1283 (2009).

  16. 16

    Ng, W. L. et al. An efficient room-temperature silicon-based light-emitting diode. Nature 410, 192–194 (2001).

  17. 17

    Cloutier, S. G., Kossyrev, P. A. & Xu, J. Optical gain and stimulated emission in periodic nanopatterned crystalline silicon. Nature Mater. 4, 887–891 (2005).

  18. 18

    Ossicini, S., Pavesi, L. & Priolo, F. Light Emitting Silicon for Microphotonics (Springer, 2004).

  19. 19

    Shirasaki, Y., Supran, G. J., Bawendi, M. G. & Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nature Photon. 7, 13–23 (2013).

  20. 20

    Talapin, D. V., Lee, J. S., Kovalenko, M. V. & Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389–458 (2010).

  21. 21

    Pavesi, L. & Turan, R. (eds) Silicon Nanocrystals; Fundamentals, Synthesis, and Applications (Wiley-VCH, 2010).

  22. 22

    Koshida, N. (ed.) Nanostructure Science and Technology: Device Applications of Silicon Nanocrystals and Nanostructures (Springer, 2008).

  23. 23

    Sykora, M. et al. Size-dependent intrinsic radiative decay rates of silicon nanocrystals at large confinement energies. Phys. Rev. Lett. 100, 067401 (2008).

  24. 24

    Wolkin, M., Jorne, J., Fauchet, P., Allan, G. & Delerue, C. Electronic states and luminescence in porous silicon quantum dots: the role of oxygen. Phys. Rev. Lett. 82, 197–200 (1999).

  25. 25

    Godefroo, S. et al. Classification and control of the origin of photoluminescence from Si nanocrystals. Nature Nanotech. 3, 174–178 (2008).

  26. 26

    Daldosso, N. et al. Role of the interface region on the optoelectronic properties of silicon nanocrystals embedded in SiO2 . Phys. Rev. B 68, 085327 (2003).

  27. 27

    Walters, R. J., Bourianoff, G. I. & Atwater, H. A. Field-effect electroluminescence in silicon nanocrystals. Nature Mater. 4, 143–146 (2005).

  28. 28

    Dohnalova, K. et al. White-emitting oxidized silicon nanocrystals: Discontinuity in spectral development with reducing size. J. Appl. Phys. 107, 053102 (2010).

  29. 29

    Franzò, G. et al. Electroluminescence in silicon nanocrystal MOS structures. Appl. Phys. A 74, 1–5 (2002).

  30. 30

    Yerci, S., Li, R. & Dal Negro L. Electroluminescence from Er-doped Si-rich silicon nitride light emitting diodes. Appl. Phys. Lett. 97, 081109 (2010).

  31. 31

    Cheng, K-Y., Anthony, R., Kortshagen, U. R. & Holmes, R. J. High-efficiency silicon nanocrystal light-emitting devices. Nano Lett. 11, 1952–1956 (2011).

  32. 32

    Pavesi, L., Dal Negro, L., Mazzoleni, L., Franzo, G. & Priolo, F. Optical gain in silicon nanocrystals. Nature 408, 440–444 (2000).

  33. 33

    Dohnalova, K. et al. Optical gain at the F-band of oxidized silicon nanocrystals. J. Phys. D 42, 135102 (2009).

  34. 34

    Khriachtchev, L., Rasanen, M., Novikov, S. & Sinkkonen, J. Optical gain in Si/SiO2 lattice: experimental evidence with nanosecond pulses. Appl. Phys. Lett. 79, 1249–1252 (2001).

  35. 35

    Ruan, J., Fauchet, P. M., Dal Negro, L., Cazzanelli, M. & Pavesi, L. Stimulated emission in nanocrystalline silicon superlattices. Appl. Phys. Lett. 83, 5479–5482 (2003).

  36. 36

    Dal Negro, L. et al. Dynamics of stimulated emission in silicon nanocrystals Appl. Phys. Lett. 82, 4636–4639 (2003).

  37. 37

    Luterova, K. et al. Optical gain in porous silicon grains embedded in sol–gel derived SiO2 matrix under femtosecond excitation. Appl. Phys. Lett. 8, 3280–3283 (2004).

  38. 38

    De Boer, W. D. A. M. et al. Red spectral shift and enhanced quantum efficiency in phonon-free photoluminescence from silicon nanocrystals. Nature Nanotech. 5, 878–884 (2010).

  39. 39

    Kenyon, A. J., Trwoga, P. F., Federighi, M. & Pitt, C. W. Optical properties of PECVD erbium-doped silicon-rich silica: evidence for energy transfer between silicon microclusters and erbium ions. J. Phys. Condens. Matter 6, L319 (1994).

  40. 40

    Fujii, M., Yoshida, M., Kanzawa, Y., Hayashi, S. & Yamamoto, K. 1.54 μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: Evidence for energy transfer from Si nanocrystals to Er3+. Appl. Phys. Lett. 71, 1198–1201 (1997).

  41. 41

    Priolo, F., Franzò, G., Iacona, F., Pacifici, D. & Vinciguerra, D. Role of energy transfer on the optical properties of undoped and Er-doped interacting silicon nanocrystals. J. Appl. Phys. 89, 264 (2001).

  42. 42

    Iacona, F. et al. Electroluminescence at 1.54 μm in Er-doped Si nanocluster-based devices. Appl. Phys. Lett. 81, 3242 (2002).

  43. 43

    Irrera, A. et al. Influence of the matrix properties on the performances of Er-doped Si nanoclusters light emitting devices. J. Appl. Phys. 107, 054302 (2010).

  44. 44

    Ramirez, J. M. et al. Erbium emission in MOS light emitting devices: from energy transfer to direct impact excitation. Nanotechnology 23, 125203 (2012).

  45. 45

    Tengattini, A. et al. Toward a 1.54 μm electrically driven erbium-doped silicon slot waveguide and optical amplifier. J. Lightwave Technol. 31, 391–397 (2013).

  46. 46

    Wojdak, M. et al. Sensitization of Er luminescence by Si nanoclusters. Phys. Rev. B 69, 233315 (2004).

  47. 47

    Izeddin, I. et al. Energy transfer processes in Er-doped SiO2 sensitized with Si nanocrystals. Phys. Rev. B 78, 035327 (2008).

  48. 48

    Dohnalová, K. et al. On microscopic origin of the fast blue-green luminescence from chemically synthesized non-oxidized silicon quantum dots. Small 8, 3185–3191 (2012).

  49. 49

    Dohnalova, K. et al. Surface brightens-up Si quantum dots: Direct bandgap-like size-tunable emission. Light: Sci. Applic. 2, e47 (2013).

  50. 50

    Wagner, R. S. & Ellis, W. C. Vapour–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89 (1964).

  51. 51

    Koren, E., Berkovitch, N. & Rosenwaks, Y. Measurement of active dopant distribution and diffusion in individual silicon nanowires. Nano Lett. 10, 1163–1167 (2010).

  52. 52

    Koren, E. et al. Obtaining uniform dopant distributions in VLS-grown Si nanowires. Nano Lett. 11, 183–187 (2011).

  53. 53

    Dubrovskii, V., Sibirev, N., Harmand, J. & Glas, F. Growth kinetics and crystal structure of semiconductor nanowires. Phys. Rev. B 78, 235301 (2008).

  54. 54

    Bailly, A. et al. Direct quantification of gold along a single Si nanowire. Nano Lett. 8, 3709–3714 (2008).

  55. 55

    Koren, E. et al. Direct measurement of individual deep traps in single silicon nanowires. Nano Lett. 11, 2499–2502 (2011).

  56. 56

    Guichard, A. R., Barsic, D. N., Sharma, S., Kamins, T. I. & Brongersma, M. L. Tunable light emission from quantum-confined excitons in TiSi2-catalyzed silicon nanowires. Nano Lett. 6, 2140–2144 (2006).

  57. 57

    Walavalkar, S. S. et al. Tunable visible and near-IR emission from sub-10 nm etched single-crystal Si nanopillars. Nano Lett. 10, 4423–4428 (2010).

  58. 58

    Valenta, J., Bruhn, B. & Linnros, J. Coexistence of 1D and quasi-0D photoluminescence from single silicon nanowires. Nano Lett. 11, 3003–3009 (2011).

  59. 59

    To, W-K., Tsang, C-H., Li, H-H. & Huang, Z. Fabrication of n-type mesoporous silicon nanowires by one-step etching. Nano Lett. 11, 5252–5258 (2011).

  60. 60

    Sivakov, V. et al. Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters. Nano Lett. 9, 1549–1554 (2009).

  61. 61

    Huang, Z. P. et al. Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching. Nano Lett. 8, 3046–3051 (2008).

  62. 62

    Irrera, A. et al. Quantum confinement and electroluminescence in ultrathin silicon nanowires fabricated by a maskless etching technique. Nanotechnology 23, 075204 (2012).

  63. 63

    Artoni, P. et al. Temperature dependence and aging effects on silicon nanowires photoluminescence. Opt. Express 20, 1483–1490 (2012).

  64. 64

    Pecora, F. et al. Nanopatterning of silicon nanowires for enhancing visible photoluminescence. Nanoscale 4, 2863–2866 (2012).

  65. 65

    Canham, L. T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046–1048 (1990).

  66. 66

    Bisi, O., Ossicini, S. & Pavesi, L. Porous silicon: a quantum sponge structure for silicon based optoelectronics. Surf. Sci. Rep. 38, 1c126 (2000).

  67. 67

    Joannopoulos, J., Johnson, S. G., Meade, R. & Winn, J. Photonic Crystals: Molding the Flow of Light 2nd edn (Princeton Univ. Press, 2007).

  68. 68

    Krauss, T. F., De La Rue, R. M. & Brand, S. Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths. Nature 383, 699–702 (1996).

  69. 69

    Notomi, M. Manipulating light with strongly modulated photonic crystals. Rep. Prog. Phys. 73, 096501 (2010).

  70. 70

    Reardon, C., Rey, I. H., Welna, K., O'Faolain, L. & Krauss, T. F. Fabrication and characterization of photonic crystal slow light waveguides and cavities. J. Vis. Exp. 69, e50216 (2010).

  71. 71

    O'Faolain, L. et al. Loss engineered slow light waveguides. Opt. Express 18, 27627–27638 (2010).

  72. 72

    Corcoran, B. et al. Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides. Nature Photon. 3, 206–210 (2009).

  73. 73

    Akahane, Y., Asano, T., Song, B. S. & Noda, S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425, 944–947 (2004).

  74. 74

    Notomi, M., Kuramochi, E. & Taniyama, H. Ultrahigh-Q nanocavity with 1D photonic gap. Opt. Express 16, 11095–11102 (2008).

  75. 75

    Song, B. S., Noda, S., Asano, T. & Akahane, Y. Ultra-high-Q photonic double-heterostructure nanocavity. Nature Mater. 4, 207–210 (2005).

  76. 76

    Tanabe, T. et al. Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities. Appl. Phys. Lett. 90, 031115 (2007).

  77. 77

    Li, J., O'Faolain, L., Rey, I. H. & Krauss, T. F. Four-wave mixing in photonic crystal waveguides: slow light enhancement and limitations. Opt. Express 19, 4458–4463 (2011).

  78. 78

    Xiong, C. et al. Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide. Opt. Lett. 36, 3413–3415 (2011).

  79. 79

    Taguchi, Y., Takahashi, Y., Sato, Y., Asano, T. & Noda, S. Statistical studies of photonic heterostructure nanocavities with an average Q factor of three million. Opt. Express 19, 11916–11921 (2011).

  80. 80

    Ferretti, S. & Gerace, D. Single-photon nonlinear optics with Kerr-type nanostructured materials. Phys. Rev. B 85, 033303 (2012).

  81. 81

    Volz, T. et al. Ultrafast all-optical switching by single photons. Nature Photon. 6, 607–611 (2012).

  82. 82

    Iwamoto, S., Arakawa, Y. & Gomyo, A. Observation of enhanced photoluminescence from silicon photonic crystal nanocavity at room temperature. Appl. Phys. Lett. 91, 211104 (2007).

  83. 83

    Hauke, N. et al. Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities. New J. Phys. 12, 053005 (2010).

  84. 84

    Xu, X. et al. Silicon-based light-emitting devices based on Ge self-assembled quantum dots embedded in optical cavities. IEEE J. Sel. Topics Quantum Electron. 18, 1830 (2012).

  85. 85

    Xu, X. et al. High-quality-factor light-emitting diodes with modified photonic crystal nanocavities including Ge self-assembled quantum dots on silicon-on-insulator substrates. Appl. Phys. Express 5, 102101 (2012).

  86. 86

    Gong, Y. et al. Observation of transparency of erbium-doped silicon nitride in photonic crystal nanobeam cavities. Opt. Express 18, 13863–13873 (2010).

  87. 87

    Gong, Y. et al. Linewidth narrowing and Purcell enhancement in photonic crystal cavities on an Er-doped silicon nitride platform. Opt. Express 18, 2601–2612 (2010).

  88. 88

    Lo Savio, R. et al. Enhanced 1.54 μm emission in Y–Er disilicate thin films on silicon photonic crystal cavities. Opt. Express 21, 10278–10288 (2013).

  89. 89

    Shakoor, A. et al. Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelengths. Laser Photon. Rev. 1–8 (2012).

  90. 90

    Davies, G. The optical properties of luminescent centres in silicon. Phys. Rep. 176, 83–188 (1989).

  91. 91

    Recht, D., Capasso, F. & Aziz, M. J. On the temperature dependence of point-defect-mediated luminescence in silicon. Appl. Phys. Lett. 94, 251113 (2009).

  92. 92

    Lo Savio, R. et al. Room-temperature emission at telecom wavelengths from silicon photonic crystal nanocavities. Appl. Phys. Lett. 98, 201106 (2011).

  93. 93

    Liu, J. et al. High-performance, tensile-strained Ge p–i–n photodetectors on a Si platform. Appl. Phys. Lett. 87, 103501 (2005).

  94. 94

    Geis, M. W. et al. CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band. IEEE Photon. Technol. Lett. 19, 152–154 (2007).

  95. 95

    Iwamoto, S. & Arakawa, Y. Enhancement of light emission from silicon by utilizing photonic nanostructures. IEICE Trans. Electron. E95-C, 206–212 (2012).

  96. 96

    Zhao, J., Wang, A., Green, M. A. & Ferrazza, F. Novel 19.8% efficient 'honeycomb' textured multicrystalline and 24.4% monocrystalline silicon solar cells. Appl. Phys. Lett. 73, 1991–1993 (1998).

  97. 97

    Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

  98. 98

    Polman, A. & Atwater, H. A. Photonic design principles for ultra-high efficiency photovoltaics. Nature Mater. 11, 174–177 (2012).

  99. 99

    Nozik, A. J. Quantum dot solar cells. Physica E 14, 115–120 (2002).

  100. 100

    Govoni, M., Mari, I. & Ossicini, S. Carrier multiplication between interacting nanocrystals for fostering silicon-based photovoltaics. Nature Photon. 6, 672–679 (2012).

  101. 101

    Liu, C-Y., Holman, Z. C. & Kortshagen, U. R. L. Optimization of Si NC/P3HT hybrid solar cells. Adv. Funct. Mater. 20, 2157–2164 (2010).

  102. 102

    Mangolini, L., Thimsen, E. & Kortshagen, U. High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett. 5, 655–659 (2005).

  103. 103

    Jurbergs, D., Rogojina, E., Mangolini, L. & Kortshagen, U. Silicon nanocrystals with ensemble quantum yields exceeding 60%. Appl. Phys. Lett. 88, 233116 (2006).

  104. 104

    Gupta, A., Swihart, M. T. & Wiggers, H. Luminescent colloidal dispersion of silicon quantum dots from microwave plasma synthesis: Exploring the photoluminescence behavior across the visible spectrum. Adv. Funct. Mater. 19, 696–703 (2009).

  105. 105

    Niesar, S. et al. Low-cost post-growth treatments of crystalline silicon nanoparticles improving surface and electronic properties. Adv. Funct. Mater. 22, 1190–1198 (2012).

  106. 106

    Nozik, A. J. Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots. Annu. Rev. Phys. Chem. 52, 193–231 (2001).

  107. 107

    Kelzenberg, M. D. et al. Photovoltaic measurements in single-nanowire silicon solar cells. Nano Lett. 8, 710–714 (2008).

  108. 108

    Tian, B., Kempa, T. J. & Lieber, C. M. Single nanowire photovoltaics. Chem. Soc. Rev. 38, 16–24 (2009).

  109. 109

    Kelzenberg, M. D. et al. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nature Mater. 9, 239–244 (2010).

  110. 110

    Kayes, M., Atwater, H. A. & Lewis, N. S. Comparison of the device physics principles of planar and radial p–n junction nanorod solar cells. J. Appl. Phys. 97, 114302 (2005).

  111. 111

    Kempa, T. J. et al. Single and tandem axial p–i–n nanowire photovoltaic devices. Nano Lett. 8, 3456–3460 (2008).

  112. 112

    Mohite, A. D. et al. Highly efficient charge separation and collection across in situ doped axial VLS-grown Si nanowire p−n junctions. Nano Lett. 12, 1965–1971 (2012).

  113. 113

    Tian, B. et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885–890 (2007).

  114. 114

    Bronstrup, G. et al. Optical properties of individual silicon nanowires for photonic devices. ACS Nano 4, 7113–7122 (2010).

  115. 115

    Stelzner, T. et al. Silicon nanowire-based solar cells. Nanotechnology 19, 295203 (2008).

  116. 116

    Christiansen, S. et al. Nanowire device concepts for thin film photovoltaics in Renewable Energy and the Environment Optics and Photonics Congress OSA Technical Digest (online) (OSA, 2012).

  117. 117

    Schaller, R. D., Sykora, M., Pietryga, J. M. & Klimov, V. I. Seven excitons at the cost of one: Redefining the limits for conversion efficiency of photons into charge carriers. Nano Lett. 6, 424–429 (2006).

  118. 118

    Beard, M. C. et al. Multiple exciton generation in colloidal silicon nanocrystals. Nano Lett. 7, 2506–2512 (2007).

  119. 119

    Trinh, M. T. et al. In spite of recent doubts carrier multiplication does occur in PbSe nanocrystals. Nano Lett. 8, 1713–1718 (2008).

  120. 120

    Beard, M. C. et al. Comparing multiple exciton generation in quantum dots to impact ionization in bulk semiconductors: implications for enhancement of solar energy conversion. Nano Lett. 10, 3019–3027 (2010).

  121. 121

    Hanna, M. C. & Nozik, A. J. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 100, 074510 (2006).

  122. 122

    Trinh, M. T. et al. Experimental investigation and modeling of Auger recombination in silicon nanocrystals. J. Phys. Chem. C 117, 5963–5968 (2013).

  123. 123

    Timmerman, D., Izzedin, I., Stallinga, P., Yassievich, I. N. & Gregorkiewicz, T. Space-separated quantum cutting with Si nanocrystals for photovoltaic applications. Nature Photon. 2, 105–109 (2008).

  124. 124

    Timmerman, D., Valenta, J., Dohnalová, K., de Boer, W. D. A. M. & Gregorkiewicz, T. Step-like enhancement of luminescence quantum yield of Si nanocrystals. Nature Nanotech. 6, 710–713 (2011).

  125. 125

    Trinh, M. T. et al. Direct generation of multiple excitons in adjacent silicon nanocrystals revealed by induced absorption. Nature Photon. 6, 316–320 (2012).

  126. 126

    Brewer, A. & Von Haeften, K. In situ passivation and blue luminescence of silicon clusters using a cluster beam/H2O codeposition production method. Appl. Phys. Lett. 94, 261102 (2009).

  127. 127

    Tsybeskov, L., Vandyshev, J. V. & Fauchet, P. Blue emission in porous silicon: Oxygen-related luminescence. Phys. Rev. B 49, 7821–7824 (1994).

  128. 128

    Guang, S. H. et al. Two- and three-photon absorption and frequency upconverted emission of silicon quantum dots. Nano Lett. 8, 2688–2692 (2008).

  129. 129

    Atwater, H. A. & Polman, A. Plasmonics for photovoltaic devices. Nature Mater. 9, 205–213 (2010).

  130. 130

    Yablonovitch, E. Statistical ray optics. J. Opt. Soc. Am. 72, 899–907 (1982).

  131. 131

    Campbell, P. & Green, M. A. Light trapping properties of pyramidally textured surfaces. J. Appl. Phys. 62, 243–249 (1987).

  132. 132

    Bozzola, A., Liscidini, M. & Andreani, L. C. Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns. Opt. Express 20, A224–A244 (2012).

  133. 133

    Oh, J., Yuan, H.-C. & Branz, H. M. An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. Nature Nanotech. 7, 743–748 (2012).

  134. 134

    Otto, M. et al. Conformal transparent conducting oxides on black silicon. Adv. Mater. 22, 5035–5038 (2010).

  135. 135

    Kuo, M.-L. et al. Realization of a near-perfect antireflection coating for silicon solar utilizations. Opt. Lett. 33, 2527–2529 (2008).

  136. 136

    Kroll, M. et al. Employing dielectric diffractive structures in solar cells—a numerical study. Phys. Stat. Sol. (a) 205, 2777–2795 (2008).

  137. 137

    Martins, E. R. et al. Deterministic quasi-random nanostructures for photon control. Nature Commun. 4, 2665 (2013).

  138. 138

    Miller, O. D., Ganapati, V. & Yablonovitch, E. Inverse design of a nano-scale surface texture for light trapping. Conference on Lasers and Electro-Optics (CLEO) OSA Technical Digest (online) (OSA, 2012).

  139. 139

    Vynck, K., Burresi, M., Riboli, F. & Wiersma, D. S. Photon management in two-dimensional disordered media. Nature Mater. 11, 1017–1022 (2012).

  140. 140

    Oskooi, A. et al. Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics. Appl. Phys. Lett. 100, 181110 (2012).

  141. 141

    Kowalczewski, P., Liscidini, M. & Andreani, L. C. Engineering Gaussian disorder at rough interfaces for light trapping in thin-film solar cells. Opt. Lett. 37, 4868–4870 (2012).

  142. 142

    Mallick, S. B., Agrawal, M. & Peumans, P. Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells. Opt. Express 18, 5691–5706 (2010).

  143. 143

    Demésy, G. & John, S. Solar energy trapping with modulated silicon nanowire photonic crystals. J. Appl. Phys. 112, 074326 (2012).

  144. 144

    Martins, E. R., Li, J., Liu, Y. & Krauss, T. F. Engineering gratings for light trapping in photovoltaics: The supercell concept. Phys. Rev. B 86, 041404(R) (2012).

  145. 145

    Yu, Z., Raman, A. & Fan, S. Fundamental limit of nanophotonic light trapping in solar cells. Proc. Natl Acad. Sci. USA 107, 17491–17496 (2010).

  146. 146

    Mallik, S. B. et al. Ultrathin crystalline-silicon solar cells with embedded photonic crystals. Appl. Phys. Lett. 100, 053113 (2012).

  147. 147

    Otto, M. et al. Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition. Appl. Phys. Lett. 100, 191603 (2012).

  148. 148

    Paetzold, U. W., Moulin E., Pieters, B. E., Rau, U. & Carius, R. Optical simulations of microcrystalline silicon solar cells applying plasmonic reflection grating back contacts. J. Photon. Energy 2, 027002 (2012).

  149. 149

    Sai, H., Saito, K., Hozuki, N. & Kondo, M. Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells. Appl. Phys. Lett. 102, 053509 (2013).

  150. 150

    Kanzawa, Y. et al. Size-dependent near-infrared photoluminescence spectra of Si nanocrystals embedded in SiO2 matrix. Solid State Commun. 7, 533–537 (1997).

  151. 151

    Iacona, F., Bongiorno, C., Spinella, C., Boninelli, S. & Priolo, F. Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films. J. Appl. Phys. 95, 3723 (2004).

  152. 152

    Zacharias, M. et al. Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach. Appl. Phys. Lett. 80, 661–663 (2002).

  153. 153

    Belomoin, G., Therrien, J. & Nayfeh, M. Oxide and hydrogen capped ultrasmall blue luminescent Si nanoparticles. Appl. Phys. Lett. 77, 779–181 (2000).

  154. 154

    Valenta, J. et al. Colloidal suspensions of silicon nanocrystals: from single nanocrystals to photonic structures. Opt. Mater. 27, 1046–1049 (2005).

  155. 155

    Doğan, I. et al. Ultrahigh throughput plasma processing of free standing silicon nanocrystals with lognormal size distribution. J. Appl. Phys. 113, 134306 (2013).

  156. 156

    Veinot, J. G. C. Synthesis, surface functionalization, and properties of freestanding silicon nanocrystals. Chem. Commun. 4160–4168 (2006).

  157. 157

    Yang, C.-S. et al. Synthesis of alkyl-terminated silicon nanoclusters by a solution route. J. Am. Chem. Soc. 121, 5191–5195 (1999).

  158. 158

    Kim, B. J. et al. Kinetics of individual nucleation events observed in nanoscale vapor–liquid–solid growth. Science 322, 1070–1073 (2008).

  159. 159

    Peng, K. et al. Aligned single-crystalline Si nanowire arrays for photovoltaic applications. Small 1, 1062–1067 (2005).

  160. 160

    Delerue, C. & Lannoo, M. Nanostructures: Theory and Modelling (Springer, 2004).

  161. 161

    Harrison, P. QuantumWells, Wires and Dots 2nd edn (Wiley, 2005).

  162. 162

    Luppi, M. & Ossicini, S. Ab initio study on oxidized silicon clusters and silicon nanocrystals embedded in SiO2: Beyond the quantum confinement effect. Phys. Rev. B 71, 035340 (2005).

  163. 163

    Fujii, M., Toshikiyo, K., Takase, Y., Yamaguchi, Y. & Hayashi, S. Below bulk-band-gap photoluminescence at room temperature from heavily P- and B-doped Si nanocrystals. J. Appl. Phys. 94, 1990–1995 (2003).

  164. 164

    Rosso-Vasic, M., Spruijt, M., van Lagen, B., De Cola, L. & Zuilhof, H. Alkyl-functionalized oxide-free silicon nanoparticles: Synthesis and optical properties. Small 4, 1835–1841 (2008).

  165. 165

    Kovalev, D., Heckler, H., Polisski, G. & Koch, F. Optical properties of Si nanocrystals. Phys. Status Solidi B 215, 871–932 (1999).

  166. 166

    Sychugov, I., Juhasz, R., Valenta, J. & Linnros, J. Narrow luminescence linewidth of a silicon quantum dot. Phys. Rev Lett. 94, 087405 (2005).

  167. 167

    Bruhn, B., Valenta, J., Sychugov, I., Mitsuishi, K. & Linnros, J. Transition from silicon nanowires to isolated quantum dots: Optical and structural evolution. Phys. Rev. B 87, 045404 (2012).

  168. 168

    Hao, X. et al. Effects of boron doping on the structural and optical properties of silicon nanocrystals in a silicon dioxide matrix. Nanotechnology 19, 424019 (2008).

  169. 169

    Iori, F. & Ossicini, S. Effects of simultaneous doping with boron and phosphor on the structural, electronic and optical properties of silicon nanostructures. Physica E 41, 939 (2009).

  170. 170

    Fukuda, M., Fujii, M. & Hayashi, S. Room-temperature below bulk-Si band gap luminescence from P and B co-doped and compensated Si nanocrystals. J. Lum. 131, 1066–1069 (2011).

  171. 171

    Pitanti, A. et al. Energy transfer mechanism and Auger effect in Er3+ coupled silicon nanoparticle samples J. Appl. Phys. 108, 053518 (2010).

  172. 172

    Notomi, M. et al. Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. Phys. Rev. Lett. 87, 253902 (2001).

  173. 173

    Tran, N. V. Q., Combrié, S. & De Rossi, A. Directive emission from high-Q photonic crystal cavities through band folding. Phys. Rev. B 79, 041101(R) (2009).

  174. 174

    Portalupi, S. L. et al. Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor. Opt. Express 18, 16064–16073 (2010).

Download references

Acknowledgements

We thank L. C. Andreani for his active collaboration and for a critical reading of this manuscript. F.P. acknowledges collaboration on silicon nanostructures, partly reviewed here, with S. Boninelli, G. Franzò, F. Iacona, A. Irrera and M. Miritello. T.G. acknowledges financial support by Technologiestichting STW and Stichting der Fundamenteel Onderzoek der Materie (FOM). M.G. acknowledges D. Gerace and L. C. Andreani for their collaboration on silicon photonic crystals. T.F.K. acknowledges support by the UK EPSRC through EP/F001622/1 “UK Silicon Photonics”. F.P., M.G. and T.F.K. acknowledge support by the EU through the NanoScience–ERA project EP/H00680X/1 “LECSIN”. F.P. acknowledges partial support by the EU and MIUR through the projects PON01_01725 named “Novel PV Technologies”, PON02_00355_3391233 named Energetic, and PON a3_00136 named BRIT.

Author information

Correspondence to Francesco Priolo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Priolo, F., Gregorkiewicz, T., Galli, M. et al. Silicon nanostructures for photonics and photovoltaics. Nature Nanotech 9, 19–32 (2014). https://doi.org/10.1038/nnano.2013.271

Download citation

Further reading