Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Silicon nanostructures for photonics and photovoltaics

Abstract

Silicon has long been established as the material of choice for the microelectronics industry. This is not yet true in photonics, where the limited degrees of freedom in material design combined with the indirect bandgap are a major constraint. Recent developments, especially those enabled by nanoscale engineering of the electronic and photonic properties, are starting to change the picture, and some silicon nanostructures now approach or even exceed the performance of equivalent direct-bandgap materials. Focusing on two application areas, namely communications and photovoltaics, we review recent progress in silicon nanocrystals, nanowires and photonic crystals as key examples of functional nanostructures. We assess the state of the art in each field and highlight the challenges that need to be overcome to make silicon a truly high-performing photonic material.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electrically driven devices based on nanocrystals and nanowires.
Figure 2: Nonlinear optics in silicon photonic crystals.
Figure 3: Enhanced light emission from silicon photonic crystals.
Figure 4: Photon cutting and pasting by Si nanocrystals.
Figure 5: Supercell binary grating for light trapping.

Similar content being viewed by others

References

  1. Claps, R. et al. Observation of stimulated Raman scattering in silicon waveguides. Opt. Express 11, 1731–1739 (2003).

    Article  CAS  Google Scholar 

  2. Rong, H. et al. An all-silicon Raman laser. Nature 433, 725–728 (2005).

    Article  CAS  Google Scholar 

  3. Rong, H. et al. Low-threshold continuous-wave Raman silicon laser. Nature Photon. 1, 232–237 (2007).

    Article  CAS  Google Scholar 

  4. Takahashi, Y. et al. A micrometre-scale Raman silicon laser with a microwatt threshold. Nature 498, 470–474 (2013).

    Article  CAS  Google Scholar 

  5. Liu, A. et al. A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor. Nature 427, 615–618 (2004).

    Article  CAS  Google Scholar 

  6. Reed, G. T., Mashanovich, G. Z., Gardes, F. Y. & Thomson, D. J. Silicon optical modulators. Nature Photon. 4, 518–526 (2010).

    Article  CAS  Google Scholar 

  7. Miller, D. A. B. Device requirements for optical interconnects to silicon chips. Proc. IEEE 97, 1166 (2009).

    Article  CAS  Google Scholar 

  8. Notomi, M. et al. Optical bistable switching action of Si high-Q photonic-crystal nanocavities. Opt. Express 13, 2678–2687 (2005).

    Article  CAS  Google Scholar 

  9. Galli, M. et al. Low-power continuous-wave harmonic generation in silicon photonic crystal cavities. Opt. Express 18, 26613–26624 (2010).

    Article  CAS  Google Scholar 

  10. Matsuo, S. et al. 20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption. Opt. Express 19, 2242–2250 (2011).

    Article  CAS  Google Scholar 

  11. Debnath, K. et al. Cascaded modulator architecture for WDM applications. Opt. Express 20, 27420–27428 (2012).

    Article  Google Scholar 

  12. Fujita, M., Takahashi, S., Tanaka, Y., Asano, T. & Noda, S. Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals. Science 308, 1296–1298 (2005).

    Article  CAS  Google Scholar 

  13. Weber, J. & Alonso, M. I. Near-band-gap photoluminescence of Si–Ge alloys. Phys. Rev. B 40, 5683–5693 (1989).

    Article  CAS  Google Scholar 

  14. Kenyon, A. J. Erbium in silicon. Semicond. Sci. Technol. 20, R65–R84 (2005).

    Article  CAS  Google Scholar 

  15. Vinh, N. Q., Ha, N. N. & Gregorkiewicz, T. Photonic properties of Er-doped crystalline silicon. Proc. IEEE 97, Spec. Issue (7) on Silicon Photonics, 1269–1283 (2009).

    Article  CAS  Google Scholar 

  16. Ng, W. L. et al. An efficient room-temperature silicon-based light-emitting diode. Nature 410, 192–194 (2001).

    Article  CAS  Google Scholar 

  17. Cloutier, S. G., Kossyrev, P. A. & Xu, J. Optical gain and stimulated emission in periodic nanopatterned crystalline silicon. Nature Mater. 4, 887–891 (2005).

    Article  CAS  Google Scholar 

  18. Ossicini, S., Pavesi, L. & Priolo, F. Light Emitting Silicon for Microphotonics (Springer, 2004).

    Google Scholar 

  19. Shirasaki, Y., Supran, G. J., Bawendi, M. G. & Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nature Photon. 7, 13–23 (2013).

    Article  CAS  Google Scholar 

  20. Talapin, D. V., Lee, J. S., Kovalenko, M. V. & Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389–458 (2010).

    Article  CAS  Google Scholar 

  21. Pavesi, L. & Turan, R. (eds) Silicon Nanocrystals; Fundamentals, Synthesis, and Applications (Wiley-VCH, 2010).

    Book  Google Scholar 

  22. Koshida, N. (ed.) Nanostructure Science and Technology: Device Applications of Silicon Nanocrystals and Nanostructures (Springer, 2008).

    Google Scholar 

  23. Sykora, M. et al. Size-dependent intrinsic radiative decay rates of silicon nanocrystals at large confinement energies. Phys. Rev. Lett. 100, 067401 (2008).

    Article  CAS  Google Scholar 

  24. Wolkin, M., Jorne, J., Fauchet, P., Allan, G. & Delerue, C. Electronic states and luminescence in porous silicon quantum dots: the role of oxygen. Phys. Rev. Lett. 82, 197–200 (1999).

    Article  CAS  Google Scholar 

  25. Godefroo, S. et al. Classification and control of the origin of photoluminescence from Si nanocrystals. Nature Nanotech. 3, 174–178 (2008).

    Article  CAS  Google Scholar 

  26. Daldosso, N. et al. Role of the interface region on the optoelectronic properties of silicon nanocrystals embedded in SiO2 . Phys. Rev. B 68, 085327 (2003).

    Article  CAS  Google Scholar 

  27. Walters, R. J., Bourianoff, G. I. & Atwater, H. A. Field-effect electroluminescence in silicon nanocrystals. Nature Mater. 4, 143–146 (2005).

    Article  CAS  Google Scholar 

  28. Dohnalova, K. et al. White-emitting oxidized silicon nanocrystals: Discontinuity in spectral development with reducing size. J. Appl. Phys. 107, 053102 (2010).

    Article  CAS  Google Scholar 

  29. Franzò, G. et al. Electroluminescence in silicon nanocrystal MOS structures. Appl. Phys. A 74, 1–5 (2002).

    Article  Google Scholar 

  30. Yerci, S., Li, R. & Dal Negro L. Electroluminescence from Er-doped Si-rich silicon nitride light emitting diodes. Appl. Phys. Lett. 97, 081109 (2010).

    Article  CAS  Google Scholar 

  31. Cheng, K-Y., Anthony, R., Kortshagen, U. R. & Holmes, R. J. High-efficiency silicon nanocrystal light-emitting devices. Nano Lett. 11, 1952–1956 (2011).

    Article  CAS  Google Scholar 

  32. Pavesi, L., Dal Negro, L., Mazzoleni, L., Franzo, G. & Priolo, F. Optical gain in silicon nanocrystals. Nature 408, 440–444 (2000).

    Article  CAS  Google Scholar 

  33. Dohnalova, K. et al. Optical gain at the F-band of oxidized silicon nanocrystals. J. Phys. D 42, 135102 (2009).

    Article  CAS  Google Scholar 

  34. Khriachtchev, L., Rasanen, M., Novikov, S. & Sinkkonen, J. Optical gain in Si/SiO2 lattice: experimental evidence with nanosecond pulses. Appl. Phys. Lett. 79, 1249–1252 (2001).

    Article  CAS  Google Scholar 

  35. Ruan, J., Fauchet, P. M., Dal Negro, L., Cazzanelli, M. & Pavesi, L. Stimulated emission in nanocrystalline silicon superlattices. Appl. Phys. Lett. 83, 5479–5482 (2003).

    Article  CAS  Google Scholar 

  36. Dal Negro, L. et al. Dynamics of stimulated emission in silicon nanocrystals Appl. Phys. Lett. 82, 4636–4639 (2003).

    Article  CAS  Google Scholar 

  37. Luterova, K. et al. Optical gain in porous silicon grains embedded in sol–gel derived SiO2 matrix under femtosecond excitation. Appl. Phys. Lett. 8, 3280–3283 (2004).

    Article  CAS  Google Scholar 

  38. De Boer, W. D. A. M. et al. Red spectral shift and enhanced quantum efficiency in phonon-free photoluminescence from silicon nanocrystals. Nature Nanotech. 5, 878–884 (2010).

    Article  CAS  Google Scholar 

  39. Kenyon, A. J., Trwoga, P. F., Federighi, M. & Pitt, C. W. Optical properties of PECVD erbium-doped silicon-rich silica: evidence for energy transfer between silicon microclusters and erbium ions. J. Phys. Condens. Matter 6, L319 (1994).

    Article  Google Scholar 

  40. Fujii, M., Yoshida, M., Kanzawa, Y., Hayashi, S. & Yamamoto, K. 1.54 μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: Evidence for energy transfer from Si nanocrystals to Er3+. Appl. Phys. Lett. 71, 1198–1201 (1997).

    Article  CAS  Google Scholar 

  41. Priolo, F., Franzò, G., Iacona, F., Pacifici, D. & Vinciguerra, D. Role of energy transfer on the optical properties of undoped and Er-doped interacting silicon nanocrystals. J. Appl. Phys. 89, 264 (2001).

    Article  CAS  Google Scholar 

  42. Iacona, F. et al. Electroluminescence at 1.54 μm in Er-doped Si nanocluster-based devices. Appl. Phys. Lett. 81, 3242 (2002).

    Article  CAS  Google Scholar 

  43. Irrera, A. et al. Influence of the matrix properties on the performances of Er-doped Si nanoclusters light emitting devices. J. Appl. Phys. 107, 054302 (2010).

    Article  CAS  Google Scholar 

  44. Ramirez, J. M. et al. Erbium emission in MOS light emitting devices: from energy transfer to direct impact excitation. Nanotechnology 23, 125203 (2012).

    Article  CAS  Google Scholar 

  45. Tengattini, A. et al. Toward a 1.54 μm electrically driven erbium-doped silicon slot waveguide and optical amplifier. J. Lightwave Technol. 31, 391–397 (2013).

    Article  CAS  Google Scholar 

  46. Wojdak, M. et al. Sensitization of Er luminescence by Si nanoclusters. Phys. Rev. B 69, 233315 (2004).

    Article  CAS  Google Scholar 

  47. Izeddin, I. et al. Energy transfer processes in Er-doped SiO2 sensitized with Si nanocrystals. Phys. Rev. B 78, 035327 (2008).

    Article  CAS  Google Scholar 

  48. Dohnalová, K. et al. On microscopic origin of the fast blue-green luminescence from chemically synthesized non-oxidized silicon quantum dots. Small 8, 3185–3191 (2012).

    Article  CAS  Google Scholar 

  49. Dohnalova, K. et al. Surface brightens-up Si quantum dots: Direct bandgap-like size-tunable emission. Light: Sci. Applic. 2, e47 (2013).

    Article  CAS  Google Scholar 

  50. Wagner, R. S. & Ellis, W. C. Vapour–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89 (1964).

    Article  CAS  Google Scholar 

  51. Koren, E., Berkovitch, N. & Rosenwaks, Y. Measurement of active dopant distribution and diffusion in individual silicon nanowires. Nano Lett. 10, 1163–1167 (2010).

    Article  CAS  Google Scholar 

  52. Koren, E. et al. Obtaining uniform dopant distributions in VLS-grown Si nanowires. Nano Lett. 11, 183–187 (2011).

    Article  CAS  Google Scholar 

  53. Dubrovskii, V., Sibirev, N., Harmand, J. & Glas, F. Growth kinetics and crystal structure of semiconductor nanowires. Phys. Rev. B 78, 235301 (2008).

    Article  CAS  Google Scholar 

  54. Bailly, A. et al. Direct quantification of gold along a single Si nanowire. Nano Lett. 8, 3709–3714 (2008).

    Article  CAS  Google Scholar 

  55. Koren, E. et al. Direct measurement of individual deep traps in single silicon nanowires. Nano Lett. 11, 2499–2502 (2011).

    Article  CAS  Google Scholar 

  56. Guichard, A. R., Barsic, D. N., Sharma, S., Kamins, T. I. & Brongersma, M. L. Tunable light emission from quantum-confined excitons in TiSi2-catalyzed silicon nanowires. Nano Lett. 6, 2140–2144 (2006).

    Article  CAS  Google Scholar 

  57. Walavalkar, S. S. et al. Tunable visible and near-IR emission from sub-10 nm etched single-crystal Si nanopillars. Nano Lett. 10, 4423–4428 (2010).

    Article  CAS  Google Scholar 

  58. Valenta, J., Bruhn, B. & Linnros, J. Coexistence of 1D and quasi-0D photoluminescence from single silicon nanowires. Nano Lett. 11, 3003–3009 (2011).

    Article  CAS  Google Scholar 

  59. To, W-K., Tsang, C-H., Li, H-H. & Huang, Z. Fabrication of n-type mesoporous silicon nanowires by one-step etching. Nano Lett. 11, 5252–5258 (2011).

    Article  CAS  Google Scholar 

  60. Sivakov, V. et al. Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters. Nano Lett. 9, 1549–1554 (2009).

    Article  CAS  Google Scholar 

  61. Huang, Z. P. et al. Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching. Nano Lett. 8, 3046–3051 (2008).

    Article  CAS  Google Scholar 

  62. Irrera, A. et al. Quantum confinement and electroluminescence in ultrathin silicon nanowires fabricated by a maskless etching technique. Nanotechnology 23, 075204 (2012).

    Article  CAS  Google Scholar 

  63. Artoni, P. et al. Temperature dependence and aging effects on silicon nanowires photoluminescence. Opt. Express 20, 1483–1490 (2012).

    Article  CAS  Google Scholar 

  64. Pecora, F. et al. Nanopatterning of silicon nanowires for enhancing visible photoluminescence. Nanoscale 4, 2863–2866 (2012).

    Article  CAS  Google Scholar 

  65. Canham, L. T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046–1048 (1990).

    Article  CAS  Google Scholar 

  66. Bisi, O., Ossicini, S. & Pavesi, L. Porous silicon: a quantum sponge structure for silicon based optoelectronics. Surf. Sci. Rep. 38, 1c126 (2000).

    Article  Google Scholar 

  67. Joannopoulos, J., Johnson, S. G., Meade, R. & Winn, J. Photonic Crystals: Molding the Flow of Light 2nd edn (Princeton Univ. Press, 2007).

    Google Scholar 

  68. Krauss, T. F., De La Rue, R. M. & Brand, S. Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths. Nature 383, 699–702 (1996).

    Article  CAS  Google Scholar 

  69. Notomi, M. Manipulating light with strongly modulated photonic crystals. Rep. Prog. Phys. 73, 096501 (2010).

    Article  CAS  Google Scholar 

  70. Reardon, C., Rey, I. H., Welna, K., O'Faolain, L. & Krauss, T. F. Fabrication and characterization of photonic crystal slow light waveguides and cavities. J. Vis. Exp. 69, e50216 (2010).

    Google Scholar 

  71. O'Faolain, L. et al. Loss engineered slow light waveguides. Opt. Express 18, 27627–27638 (2010).

    Article  CAS  Google Scholar 

  72. Corcoran, B. et al. Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides. Nature Photon. 3, 206–210 (2009).

    Article  CAS  Google Scholar 

  73. Akahane, Y., Asano, T., Song, B. S. & Noda, S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425, 944–947 (2004).

    Article  CAS  Google Scholar 

  74. Notomi, M., Kuramochi, E. & Taniyama, H. Ultrahigh-Q nanocavity with 1D photonic gap. Opt. Express 16, 11095–11102 (2008).

    Article  CAS  Google Scholar 

  75. Song, B. S., Noda, S., Asano, T. & Akahane, Y. Ultra-high-Q photonic double-heterostructure nanocavity. Nature Mater. 4, 207–210 (2005).

    Article  CAS  Google Scholar 

  76. Tanabe, T. et al. Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities. Appl. Phys. Lett. 90, 031115 (2007).

    Article  CAS  Google Scholar 

  77. Li, J., O'Faolain, L., Rey, I. H. & Krauss, T. F. Four-wave mixing in photonic crystal waveguides: slow light enhancement and limitations. Opt. Express 19, 4458–4463 (2011).

    Article  CAS  Google Scholar 

  78. Xiong, C. et al. Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide. Opt. Lett. 36, 3413–3415 (2011).

    Article  CAS  Google Scholar 

  79. Taguchi, Y., Takahashi, Y., Sato, Y., Asano, T. & Noda, S. Statistical studies of photonic heterostructure nanocavities with an average Q factor of three million. Opt. Express 19, 11916–11921 (2011).

    Article  CAS  Google Scholar 

  80. Ferretti, S. & Gerace, D. Single-photon nonlinear optics with Kerr-type nanostructured materials. Phys. Rev. B 85, 033303 (2012).

    Article  CAS  Google Scholar 

  81. Volz, T. et al. Ultrafast all-optical switching by single photons. Nature Photon. 6, 607–611 (2012).

    Article  CAS  Google Scholar 

  82. Iwamoto, S., Arakawa, Y. & Gomyo, A. Observation of enhanced photoluminescence from silicon photonic crystal nanocavity at room temperature. Appl. Phys. Lett. 91, 211104 (2007).

    Article  CAS  Google Scholar 

  83. Hauke, N. et al. Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities. New J. Phys. 12, 053005 (2010).

    Article  CAS  Google Scholar 

  84. Xu, X. et al. Silicon-based light-emitting devices based on Ge self-assembled quantum dots embedded in optical cavities. IEEE J. Sel. Topics Quantum Electron. 18, 1830 (2012).

    Article  CAS  Google Scholar 

  85. Xu, X. et al. High-quality-factor light-emitting diodes with modified photonic crystal nanocavities including Ge self-assembled quantum dots on silicon-on-insulator substrates. Appl. Phys. Express 5, 102101 (2012).

    Article  CAS  Google Scholar 

  86. Gong, Y. et al. Observation of transparency of erbium-doped silicon nitride in photonic crystal nanobeam cavities. Opt. Express 18, 13863–13873 (2010).

    Article  CAS  Google Scholar 

  87. Gong, Y. et al. Linewidth narrowing and Purcell enhancement in photonic crystal cavities on an Er-doped silicon nitride platform. Opt. Express 18, 2601–2612 (2010).

    Article  CAS  Google Scholar 

  88. Lo Savio, R. et al. Enhanced 1.54 μm emission in Y–Er disilicate thin films on silicon photonic crystal cavities. Opt. Express 21, 10278–10288 (2013).

    Article  CAS  Google Scholar 

  89. Shakoor, A. et al. Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelengths. Laser Photon. Rev. 1–8 (2012).

  90. Davies, G. The optical properties of luminescent centres in silicon. Phys. Rep. 176, 83–188 (1989).

    Article  CAS  Google Scholar 

  91. Recht, D., Capasso, F. & Aziz, M. J. On the temperature dependence of point-defect-mediated luminescence in silicon. Appl. Phys. Lett. 94, 251113 (2009).

    Article  CAS  Google Scholar 

  92. Lo Savio, R. et al. Room-temperature emission at telecom wavelengths from silicon photonic crystal nanocavities. Appl. Phys. Lett. 98, 201106 (2011).

    Article  CAS  Google Scholar 

  93. Liu, J. et al. High-performance, tensile-strained Ge p–i–n photodetectors on a Si platform. Appl. Phys. Lett. 87, 103501 (2005).

    Article  CAS  Google Scholar 

  94. Geis, M. W. et al. CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band. IEEE Photon. Technol. Lett. 19, 152–154 (2007).

    Article  CAS  Google Scholar 

  95. Iwamoto, S. & Arakawa, Y. Enhancement of light emission from silicon by utilizing photonic nanostructures. IEICE Trans. Electron. E95-C, 206–212 (2012).

    Article  Google Scholar 

  96. Zhao, J., Wang, A., Green, M. A. & Ferrazza, F. Novel 19.8% efficient 'honeycomb' textured multicrystalline and 24.4% monocrystalline silicon solar cells. Appl. Phys. Lett. 73, 1991–1993 (1998).

    Article  CAS  Google Scholar 

  97. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    Article  CAS  Google Scholar 

  98. Polman, A. & Atwater, H. A. Photonic design principles for ultra-high efficiency photovoltaics. Nature Mater. 11, 174–177 (2012).

    Article  CAS  Google Scholar 

  99. Nozik, A. J. Quantum dot solar cells. Physica E 14, 115–120 (2002).

    Article  CAS  Google Scholar 

  100. Govoni, M., Mari, I. & Ossicini, S. Carrier multiplication between interacting nanocrystals for fostering silicon-based photovoltaics. Nature Photon. 6, 672–679 (2012).

    Article  CAS  Google Scholar 

  101. Liu, C-Y., Holman, Z. C. & Kortshagen, U. R. L. Optimization of Si NC/P3HT hybrid solar cells. Adv. Funct. Mater. 20, 2157–2164 (2010).

    Article  CAS  Google Scholar 

  102. Mangolini, L., Thimsen, E. & Kortshagen, U. High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett. 5, 655–659 (2005).

    Article  CAS  Google Scholar 

  103. Jurbergs, D., Rogojina, E., Mangolini, L. & Kortshagen, U. Silicon nanocrystals with ensemble quantum yields exceeding 60%. Appl. Phys. Lett. 88, 233116 (2006).

    Article  CAS  Google Scholar 

  104. Gupta, A., Swihart, M. T. & Wiggers, H. Luminescent colloidal dispersion of silicon quantum dots from microwave plasma synthesis: Exploring the photoluminescence behavior across the visible spectrum. Adv. Funct. Mater. 19, 696–703 (2009).

    Article  CAS  Google Scholar 

  105. Niesar, S. et al. Low-cost post-growth treatments of crystalline silicon nanoparticles improving surface and electronic properties. Adv. Funct. Mater. 22, 1190–1198 (2012).

    Article  CAS  Google Scholar 

  106. Nozik, A. J. Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots. Annu. Rev. Phys. Chem. 52, 193–231 (2001).

    Article  CAS  Google Scholar 

  107. Kelzenberg, M. D. et al. Photovoltaic measurements in single-nanowire silicon solar cells. Nano Lett. 8, 710–714 (2008).

    Article  CAS  Google Scholar 

  108. Tian, B., Kempa, T. J. & Lieber, C. M. Single nanowire photovoltaics. Chem. Soc. Rev. 38, 16–24 (2009).

    Article  CAS  Google Scholar 

  109. Kelzenberg, M. D. et al. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nature Mater. 9, 239–244 (2010).

    Article  CAS  Google Scholar 

  110. Kayes, M., Atwater, H. A. & Lewis, N. S. Comparison of the device physics principles of planar and radial p–n junction nanorod solar cells. J. Appl. Phys. 97, 114302 (2005).

    Article  CAS  Google Scholar 

  111. Kempa, T. J. et al. Single and tandem axial p–i–n nanowire photovoltaic devices. Nano Lett. 8, 3456–3460 (2008).

    Article  CAS  Google Scholar 

  112. Mohite, A. D. et al. Highly efficient charge separation and collection across in situ doped axial VLS-grown Si nanowire p−n junctions. Nano Lett. 12, 1965–1971 (2012).

    Article  CAS  Google Scholar 

  113. Tian, B. et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885–890 (2007).

    Article  CAS  Google Scholar 

  114. Bronstrup, G. et al. Optical properties of individual silicon nanowires for photonic devices. ACS Nano 4, 7113–7122 (2010).

    Article  CAS  Google Scholar 

  115. Stelzner, T. et al. Silicon nanowire-based solar cells. Nanotechnology 19, 295203 (2008).

    Article  CAS  Google Scholar 

  116. Christiansen, S. et al. Nanowire device concepts for thin film photovoltaics in Renewable Energy and the Environment Optics and Photonics Congress OSA Technical Digest (online) (OSA, 2012).

    Google Scholar 

  117. Schaller, R. D., Sykora, M., Pietryga, J. M. & Klimov, V. I. Seven excitons at the cost of one: Redefining the limits for conversion efficiency of photons into charge carriers. Nano Lett. 6, 424–429 (2006).

    Article  CAS  Google Scholar 

  118. Beard, M. C. et al. Multiple exciton generation in colloidal silicon nanocrystals. Nano Lett. 7, 2506–2512 (2007).

    Article  CAS  Google Scholar 

  119. Trinh, M. T. et al. In spite of recent doubts carrier multiplication does occur in PbSe nanocrystals. Nano Lett. 8, 1713–1718 (2008).

    Article  Google Scholar 

  120. Beard, M. C. et al. Comparing multiple exciton generation in quantum dots to impact ionization in bulk semiconductors: implications for enhancement of solar energy conversion. Nano Lett. 10, 3019–3027 (2010).

    Article  CAS  Google Scholar 

  121. Hanna, M. C. & Nozik, A. J. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 100, 074510 (2006).

    Article  CAS  Google Scholar 

  122. Trinh, M. T. et al. Experimental investigation and modeling of Auger recombination in silicon nanocrystals. J. Phys. Chem. C 117, 5963–5968 (2013).

    Article  CAS  Google Scholar 

  123. Timmerman, D., Izzedin, I., Stallinga, P., Yassievich, I. N. & Gregorkiewicz, T. Space-separated quantum cutting with Si nanocrystals for photovoltaic applications. Nature Photon. 2, 105–109 (2008).

    Article  CAS  Google Scholar 

  124. Timmerman, D., Valenta, J., Dohnalová, K., de Boer, W. D. A. M. & Gregorkiewicz, T. Step-like enhancement of luminescence quantum yield of Si nanocrystals. Nature Nanotech. 6, 710–713 (2011).

    Article  CAS  Google Scholar 

  125. Trinh, M. T. et al. Direct generation of multiple excitons in adjacent silicon nanocrystals revealed by induced absorption. Nature Photon. 6, 316–320 (2012).

    Article  CAS  Google Scholar 

  126. Brewer, A. & Von Haeften, K. In situ passivation and blue luminescence of silicon clusters using a cluster beam/H2O codeposition production method. Appl. Phys. Lett. 94, 261102 (2009).

    Article  CAS  Google Scholar 

  127. Tsybeskov, L., Vandyshev, J. V. & Fauchet, P. Blue emission in porous silicon: Oxygen-related luminescence. Phys. Rev. B 49, 7821–7824 (1994).

    Article  CAS  Google Scholar 

  128. Guang, S. H. et al. Two- and three-photon absorption and frequency upconverted emission of silicon quantum dots. Nano Lett. 8, 2688–2692 (2008).

    Article  CAS  Google Scholar 

  129. Atwater, H. A. & Polman, A. Plasmonics for photovoltaic devices. Nature Mater. 9, 205–213 (2010).

    Article  CAS  Google Scholar 

  130. Yablonovitch, E. Statistical ray optics. J. Opt. Soc. Am. 72, 899–907 (1982).

    Article  Google Scholar 

  131. Campbell, P. & Green, M. A. Light trapping properties of pyramidally textured surfaces. J. Appl. Phys. 62, 243–249 (1987).

    Article  Google Scholar 

  132. Bozzola, A., Liscidini, M. & Andreani, L. C. Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns. Opt. Express 20, A224–A244 (2012).

    Article  Google Scholar 

  133. Oh, J., Yuan, H.-C. & Branz, H. M. An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. Nature Nanotech. 7, 743–748 (2012).

    Article  CAS  Google Scholar 

  134. Otto, M. et al. Conformal transparent conducting oxides on black silicon. Adv. Mater. 22, 5035–5038 (2010).

    Article  CAS  Google Scholar 

  135. Kuo, M.-L. et al. Realization of a near-perfect antireflection coating for silicon solar utilizations. Opt. Lett. 33, 2527–2529 (2008).

    Article  Google Scholar 

  136. Kroll, M. et al. Employing dielectric diffractive structures in solar cells—a numerical study. Phys. Stat. Sol. (a) 205, 2777–2795 (2008).

    Article  CAS  Google Scholar 

  137. Martins, E. R. et al. Deterministic quasi-random nanostructures for photon control. Nature Commun. 4, 2665 (2013).

    Article  CAS  Google Scholar 

  138. Miller, O. D., Ganapati, V. & Yablonovitch, E. Inverse design of a nano-scale surface texture for light trapping. Conference on Lasers and Electro-Optics (CLEO) OSA Technical Digest (online) (OSA, 2012).

    Google Scholar 

  139. Vynck, K., Burresi, M., Riboli, F. & Wiersma, D. S. Photon management in two-dimensional disordered media. Nature Mater. 11, 1017–1022 (2012).

    Article  CAS  Google Scholar 

  140. Oskooi, A. et al. Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics. Appl. Phys. Lett. 100, 181110 (2012).

    Article  CAS  Google Scholar 

  141. Kowalczewski, P., Liscidini, M. & Andreani, L. C. Engineering Gaussian disorder at rough interfaces for light trapping in thin-film solar cells. Opt. Lett. 37, 4868–4870 (2012).

    Article  CAS  Google Scholar 

  142. Mallick, S. B., Agrawal, M. & Peumans, P. Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells. Opt. Express 18, 5691–5706 (2010).

    Article  CAS  Google Scholar 

  143. Demésy, G. & John, S. Solar energy trapping with modulated silicon nanowire photonic crystals. J. Appl. Phys. 112, 074326 (2012).

    Article  CAS  Google Scholar 

  144. Martins, E. R., Li, J., Liu, Y. & Krauss, T. F. Engineering gratings for light trapping in photovoltaics: The supercell concept. Phys. Rev. B 86, 041404(R) (2012).

    Article  CAS  Google Scholar 

  145. Yu, Z., Raman, A. & Fan, S. Fundamental limit of nanophotonic light trapping in solar cells. Proc. Natl Acad. Sci. USA 107, 17491–17496 (2010).

    Article  Google Scholar 

  146. Mallik, S. B. et al. Ultrathin crystalline-silicon solar cells with embedded photonic crystals. Appl. Phys. Lett. 100, 053113 (2012).

    Article  CAS  Google Scholar 

  147. Otto, M. et al. Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition. Appl. Phys. Lett. 100, 191603 (2012).

    Article  CAS  Google Scholar 

  148. Paetzold, U. W., Moulin E., Pieters, B. E., Rau, U. & Carius, R. Optical simulations of microcrystalline silicon solar cells applying plasmonic reflection grating back contacts. J. Photon. Energy 2, 027002 (2012).

    Article  CAS  Google Scholar 

  149. Sai, H., Saito, K., Hozuki, N. & Kondo, M. Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells. Appl. Phys. Lett. 102, 053509 (2013).

    Article  CAS  Google Scholar 

  150. Kanzawa, Y. et al. Size-dependent near-infrared photoluminescence spectra of Si nanocrystals embedded in SiO2 matrix. Solid State Commun. 7, 533–537 (1997).

    Article  Google Scholar 

  151. Iacona, F., Bongiorno, C., Spinella, C., Boninelli, S. & Priolo, F. Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films. J. Appl. Phys. 95, 3723 (2004).

    Article  CAS  Google Scholar 

  152. Zacharias, M. et al. Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach. Appl. Phys. Lett. 80, 661–663 (2002).

    Article  CAS  Google Scholar 

  153. Belomoin, G., Therrien, J. & Nayfeh, M. Oxide and hydrogen capped ultrasmall blue luminescent Si nanoparticles. Appl. Phys. Lett. 77, 779–181 (2000).

    Article  CAS  Google Scholar 

  154. Valenta, J. et al. Colloidal suspensions of silicon nanocrystals: from single nanocrystals to photonic structures. Opt. Mater. 27, 1046–1049 (2005).

    Article  CAS  Google Scholar 

  155. Doğan, I. et al. Ultrahigh throughput plasma processing of free standing silicon nanocrystals with lognormal size distribution. J. Appl. Phys. 113, 134306 (2013).

    Article  CAS  Google Scholar 

  156. Veinot, J. G. C. Synthesis, surface functionalization, and properties of freestanding silicon nanocrystals. Chem. Commun. 4160–4168 (2006).

  157. Yang, C.-S. et al. Synthesis of alkyl-terminated silicon nanoclusters by a solution route. J. Am. Chem. Soc. 121, 5191–5195 (1999).

    Article  CAS  Google Scholar 

  158. Kim, B. J. et al. Kinetics of individual nucleation events observed in nanoscale vapor–liquid–solid growth. Science 322, 1070–1073 (2008).

    Article  CAS  Google Scholar 

  159. Peng, K. et al. Aligned single-crystalline Si nanowire arrays for photovoltaic applications. Small 1, 1062–1067 (2005).

    Article  CAS  Google Scholar 

  160. Delerue, C. & Lannoo, M. Nanostructures: Theory and Modelling (Springer, 2004).

    Book  Google Scholar 

  161. Harrison, P. QuantumWells, Wires and Dots 2nd edn (Wiley, 2005).

    Book  Google Scholar 

  162. Luppi, M. & Ossicini, S. Ab initio study on oxidized silicon clusters and silicon nanocrystals embedded in SiO2: Beyond the quantum confinement effect. Phys. Rev. B 71, 035340 (2005).

    Article  CAS  Google Scholar 

  163. Fujii, M., Toshikiyo, K., Takase, Y., Yamaguchi, Y. & Hayashi, S. Below bulk-band-gap photoluminescence at room temperature from heavily P- and B-doped Si nanocrystals. J. Appl. Phys. 94, 1990–1995 (2003).

    Article  CAS  Google Scholar 

  164. Rosso-Vasic, M., Spruijt, M., van Lagen, B., De Cola, L. & Zuilhof, H. Alkyl-functionalized oxide-free silicon nanoparticles: Synthesis and optical properties. Small 4, 1835–1841 (2008).

    Article  CAS  Google Scholar 

  165. Kovalev, D., Heckler, H., Polisski, G. & Koch, F. Optical properties of Si nanocrystals. Phys. Status Solidi B 215, 871–932 (1999).

    Article  CAS  Google Scholar 

  166. Sychugov, I., Juhasz, R., Valenta, J. & Linnros, J. Narrow luminescence linewidth of a silicon quantum dot. Phys. Rev Lett. 94, 087405 (2005).

    Article  CAS  Google Scholar 

  167. Bruhn, B., Valenta, J., Sychugov, I., Mitsuishi, K. & Linnros, J. Transition from silicon nanowires to isolated quantum dots: Optical and structural evolution. Phys. Rev. B 87, 045404 (2012).

    Article  CAS  Google Scholar 

  168. Hao, X. et al. Effects of boron doping on the structural and optical properties of silicon nanocrystals in a silicon dioxide matrix. Nanotechnology 19, 424019 (2008).

    Article  CAS  Google Scholar 

  169. Iori, F. & Ossicini, S. Effects of simultaneous doping with boron and phosphor on the structural, electronic and optical properties of silicon nanostructures. Physica E 41, 939 (2009).

    Article  CAS  Google Scholar 

  170. Fukuda, M., Fujii, M. & Hayashi, S. Room-temperature below bulk-Si band gap luminescence from P and B co-doped and compensated Si nanocrystals. J. Lum. 131, 1066–1069 (2011).

    Article  CAS  Google Scholar 

  171. Pitanti, A. et al. Energy transfer mechanism and Auger effect in Er3+ coupled silicon nanoparticle samples J. Appl. Phys. 108, 053518 (2010).

    Article  CAS  Google Scholar 

  172. Notomi, M. et al. Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. Phys. Rev. Lett. 87, 253902 (2001).

    Article  CAS  Google Scholar 

  173. Tran, N. V. Q., Combrié, S. & De Rossi, A. Directive emission from high-Q photonic crystal cavities through band folding. Phys. Rev. B 79, 041101(R) (2009).

    Article  CAS  Google Scholar 

  174. Portalupi, S. L. et al. Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor. Opt. Express 18, 16064–16073 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. C. Andreani for his active collaboration and for a critical reading of this manuscript. F.P. acknowledges collaboration on silicon nanostructures, partly reviewed here, with S. Boninelli, G. Franzò, F. Iacona, A. Irrera and M. Miritello. T.G. acknowledges financial support by Technologiestichting STW and Stichting der Fundamenteel Onderzoek der Materie (FOM). M.G. acknowledges D. Gerace and L. C. Andreani for their collaboration on silicon photonic crystals. T.F.K. acknowledges support by the UK EPSRC through EP/F001622/1 “UK Silicon Photonics”. F.P., M.G. and T.F.K. acknowledge support by the EU through the NanoScience–ERA project EP/H00680X/1 “LECSIN”. F.P. acknowledges partial support by the EU and MIUR through the projects PON01_01725 named “Novel PV Technologies”, PON02_00355_3391233 named Energetic, and PON a3_00136 named BRIT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Priolo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Priolo, F., Gregorkiewicz, T., Galli, M. et al. Silicon nanostructures for photonics and photovoltaics. Nature Nanotech 9, 19–32 (2014). https://doi.org/10.1038/nnano.2013.271

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.271

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing