Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Spin-resolved Andreev levels and parity crossings in hybrid superconductor–semiconductor nanostructures


The physics and operating principles of hybrid superconductor–semiconductor devices rest ultimately on the magnetic properties of their elementary subgap excitations, usually called Andreev levels. Here we report a direct measurement of the Zeeman effect on the Andreev levels of a semiconductor quantum dot with large electron g-factor, strongly coupled to a conventional superconductor with a large critical magnetic field. This material combination allows spin degeneracy to be lifted without destroying superconductivity. We show that a spin-split Andreev level crossing the Fermi energy results in a quantum phase transition to a spin-polarized state, which implies a change in the fermionic parity of the system. This crossing manifests itself as a zero-bias conductance anomaly at finite magnetic field with properties that resemble those expected for Majorana modes in a topological superconductor. Although this resemblance is understood without evoking topological superconductivity, the observed parity transitions could be regarded as precursors of Majorana modes in the long-wire limit.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Andreev levels in a hybrid N–QD–S system and device description.
Figure 2: Andreev levels in different coupling regimes and their magnetic-field dependence.
Figure 3: Magnetic-field evolution of the Andreev levels at fixed gate voltage and the level-repulsion effect.
Figure 4: Magnetic-field induced QPT and angle anisotropy.


  1. 1

    De Franceschi, S., Kouwenhoven, L. P., Schönenberger, C. & Wernsdorfer, W. Hybrid superconductor–quantum dot devices. Nature Nanotechnol. 5, 703–711 (2010).

    Article  Google Scholar 

  2. 2

    Hofstetter, L., Csonka, S., Nygård, J. & Schönenberger, C. Cooper pair splitter realized in a two-quantum-dot Y-junction. Nature 461, 960–963 (2009).

    Article  Google Scholar 

  3. 3

    Herrmann, L. G. et al. Carbon nanotubes as Cooper pair splitters. Phys. Rev. Lett. 104, 026801 (2010).

    Article  Google Scholar 

  4. 4

    Das, A. et al. High-efficiency Cooper pair splitting demonstrated by two-particle conductance resonance and positive noise cross-correlation. Nature Commun. 3, 1165 (2012).

    Article  Google Scholar 

  5. 5

    Cleuziou, J., Wernsdorfer, W., Bouchiat, V., Ondarcuhu, T. & Monthioux, M. Carbon nanotube superconducting quantum interference device. Nature Nanotechnol. 1, 53–59 (2006).

    Article  Google Scholar 

  6. 6

    Sau, J. D., Lutchyn, R. M., Tewari, S. & Sarma, S. D. Generic new platform for topological quantum computation using semiconductor heterostructures. Phys. Rev. Lett. 104, 040502 (2010).

    Article  Google Scholar 

  7. 7

    Lutchyn, R. M., Sau, J. D. & Sarma, S. D. Majorana fermions and a topological phase transition in a semiconductor–superconductor. Phys. Rev. Lett. 105, 077001 (2010).

    Article  Google Scholar 

  8. 8

    Oreg, Y., Refael, G. & von Oppen, F. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002 (2010).

    Article  Google Scholar 

  9. 9

    van Dam, J. A., Nazarov, Y. V., Bakkers, E. P. A. M., De Franceschi, S. & Kouwenhoven, L. P. Supercurrent reversal in quantum dots. Nature 442, 667–670 (2006).

    Article  Google Scholar 

  10. 10

    Buitelaar, M. R., Nussbaumer, T. & Schönenberger, C. Quantum dot in the Kondo regime coupled to superconductors. Phys. Rev. Lett. 89, 256801 (2002).

    Article  Google Scholar 

  11. 11

    Jorgensen, H. I., Novotny, T., Grove-Rasmussen, K., Flensberg, K. & Lindelof, P. E. Critical current 0–π transition in designed Josephson quantum dot junctions. Nano Lett. 7, 2441–2445 (2007).

    Article  Google Scholar 

  12. 12

    Maurand, R. et al. First-order 0–π quantum phase transition in the Kondo regime of a superconducting carbon nanotube quantum dot. Phys. Rev. X 2, 011009 (2012).

    Google Scholar 

  13. 13

    Doh, Y. J., De Franceschi, S., Bakkers, E. P. A. M. & Kouwenhoven, L. P. Andreev reflection versus Coulomb blockade in hybrid semiconductor nanowire devices. Nano Lett. 8, 4098–4102 (2008).

    Article  Google Scholar 

  14. 14

    Yamada, Y., Tanaka, Y. & Kawakami, N. Interplay of Kondo and superconducting correlations in the nonequilibrium Andreev transport through a quantum dot. Phys. Rev. B 84, 075484 (2011).

    Article  Google Scholar 

  15. 15

    Glazman, L. I. & Matveev, K. Resonant Josephson current through Kondo impurities in a tunnel barrier. JETP Lett. 49, 659 (1989).

    Google Scholar 

  16. 16

    Rozhkov, A. V. & Arovas, D. P. Josephson coupling through a magnetic impurity. Phys. Rev. Lett. 82, 2788–2791 (1999).

    Article  Google Scholar 

  17. 17

    Vecino, E., Martín-Rodero, A. & Yeyati, A. L. Josephson current through a correlated quantum level: Andreev states and π junction behavior. Phys. Rev. B 68, 035105 (2003).

    Article  Google Scholar 

  18. 18

    Oguri, A., Tanaka, Y. & Hewson, A. C. Quantum phase transition in a minimal model for the Kondo effect in a Josephson junction. J. Phys. Soc. Jpn 73, 2494–2504 (2004).

    Article  Google Scholar 

  19. 19

    Bauer, J., Oguri, A. & Hewson, A. C. Spectral properties of locally correlated electrons in a Bardeen–Cooper–Schrieffer superconductor. J. Phys. Condens. Matter 19, 486211 (2007).

    Article  Google Scholar 

  20. 20

    Choi, M. S., Lee, M., Kang, K. & Belzig, W. Kondo effect and Josephson current through a quantum dot between two superconductors. Phys. Rev. B 70, 020502(R) (2004).

    Article  Google Scholar 

  21. 21

    Meng, T., Florens, S. & Simon, P. Self-consistent description of Andreev bound states in Josephson quantum dot devices. Phys. Rev. B 79, 224521 (2009).

    Article  Google Scholar 

  22. 22

    Domański, T., Donabidowicz, A. & Wysokiński, K. I. Meservey–Tedrow–Fulde effect in a quantum dot embedded between metallic and superconducting electrodes. Phys. Rev. B 78, 144515 (2008).

    Article  Google Scholar 

  23. 23

    Futterer, D., Swieboddzinski, J., Governale, M. & König, J. Renormalization effects in interacting quantum dots coupled to superconducting leads. Phys. Rev. B 87, 014509 (2013).

    Article  Google Scholar 

  24. 24

    Kanai, Y. et al. Electrical control of Kondo effect and superconducting transport in a side-gated InAs quantum dot Josephson junction. Phys. Rev. B 82, 054512 (2010).

    Article  Google Scholar 

  25. 25

    Sand-Jespersen, T. et al. Kondo-enhanced Andreev tunneling in InAs nanowire quantum dots. Phys. Rev. Lett. 99, 126603 (2007).

    Article  Google Scholar 

  26. 26

    Eichler, A. et al. Even–odd effect in Andreev transport through a carbon nanotube quantum dot. Phys. Rev. Lett. 99, 126602 (2007).

    Article  Google Scholar 

  27. 27

    Pillet, J. D. et al. Andreev bound states in supercurrent-carrying carbon nanotubes revealed. Nature Phys. 6, 965–969 (2010).

    Article  Google Scholar 

  28. 28

    Deacon, R. S. et al. Tunneling spectroscopy of Andreev energy levels in a quantum dot coupled to a superconductor. Phys. Rev. Lett. 104, 076805 (2010).

    Article  Google Scholar 

  29. 29

    Dirks, T. et al. Transport through Andreev bound states in a graphene quantum dot. Nature Phys. 7, 386–390 (2011).

    Article  Google Scholar 

  30. 30

    Lee, E. J. H. et al. Zero-bias anomaly in a nanowire quantum dot coupled to superconductors. Phys. Rev. Lett. 109, 186802 (2012).

    Article  Google Scholar 

  31. 31

    Chang, W., Manucharyan, V. E., Jespersen, T. S., Nygåard, J. & Marcus, C. M. Tunneling spectroscopy of quasiparticle bound states in a spinful Josephson junction. Phys. Rev. Lett. 110, 217005 (2013).

    Article  Google Scholar 

  32. 32

    Pillet, J. D., Joyez, P., Zitko, R. & Goffman, M. F. Tunneling spectroscopy of a single quantum dot coupled to a superconductor: from Kondo ridge to Andreev bound states. Phys. Rev. B 88, 045101 (2013).

    Article  Google Scholar 

  33. 33

    Kumar, A. et al. Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot. Preprint at (2013).

  34. 34

    Giazotto, F. et al. A Josephson quantum electron pump. Nature Phys. 7, 857–861 (2011).

    Article  Google Scholar 

  35. 35

    Prada, E., San-Jose, P. & Aguado, R. Transport spectroscopy of N–S nanowire junctions with Majorana fermions. Phys. Rev. B 86, 180503(R) (2012).

    Article  Google Scholar 

  36. 36

    Rainis, D., Klinovaja, J. & Loss, D. Towards a realistic transport modeling in a superconducting nanowire with Majorana fermions. Phys. Rev. B 87, 024515 (2013).

    Article  Google Scholar 

  37. 37

    Sarma, S. D., Sau, J. D. & Stanescu, T. D. Splitting of the zero-bias conductance peak as smoking gun evidence for the existence of the Majorana mode in a superconductor–semiconductor nanowire. Phys. Rev. B 86, 220506(R) (2012).

    Article  Google Scholar 

  38. 38

    Liu, J., Potter, A. C., Law, K. T. & Lee, P. A. Zero-bias peaks in the tunneling conductance of spin-orbit-coupled superconducting wires with and without Majorana end-states. Phys. Rev. Lett. 109, 267002 (2012).

    Article  Google Scholar 

  39. 39

    Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices. Science 336, 1003–1007 (2012).

    Article  Google Scholar 

  40. 40

    Das, A. et al. Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions. Nature Phys. 8, 887–895 (2012).

    Article  Google Scholar 

  41. 41

    Deng, M. T. et al. Anomalous zero-bias conductance peak in a Nb–InSb nanowire–Nb hybrid device. Nano Lett. 12, 6414–6419 (2012).

    Article  Google Scholar 

  42. 42

    Finck, A. D. K., van Harlingen, D. J., Mohseni, P. K., Jung, K. & Li, X. Anomalous modulation of a zero-bias peak in a hybrid nanowire-superconductor device. Phys. Rev. Lett. 110, 126406 (2012).

    Article  Google Scholar 

  43. 43

    Churchill, H. O. H. et al. Superconductor-nanowire devices from tunnelling to multi-channel regime: zero-bias oscillations and magnetoconductance crossover. Phys. Rev. B 87, 242401(R) (2013).

    Article  Google Scholar 

  44. 44

    Stanescu, T. D., Lutchyn, R. M. & Sarma, S. D. Dimensional crossover in spin-orbit-coupled semiconductor nanowires with induced superconducting pairing. Phys. Rev. B 87, 094518 (2013).

    Article  Google Scholar 

  45. 45

    Nadj-Perge, S., Drozdov, I. K., Bernevig, B. A. & Yazdani, A. Proposal for realizing Majorana fermions in chains of magnetic atoms on a superconductor. Phys. Rev. B 88, 020407(R) (2013).

    Article  Google Scholar 

  46. 46

    Klinovaja, J., Stano, P., Yazdani, A. & Loss, D. Topological superconductivity and Majorana fermions in RKKY systems. Phys. Rev. Lett. 111, 186805 (2013).

    Article  Google Scholar 

  47. 47

    Vazifeh, M. M. & Franz, M. Self-organized topological state with Majorana fermions. Phys. Rev. Lett. 111, 206802 (2013).

    Article  Google Scholar 

  48. 48

    Braunecker, B. & Simon, P. Interplay between classical magnetic moments and superconductivity in quantum one-dimensional conductors: towards a self-sustained topological Majorana phase. Phys. Rev. Lett. 111, 147202 (2013).

    Article  Google Scholar 

  49. 49

    Pientka, F., Glazman, L. & von Oppen, F. Topological superconducting phase in helical Shiba chains. Phys. Rev. B 88, 155420 (2013).

    Article  Google Scholar 

  50. 50

    Jiang, X., Xiong, Q., Qian, F., Li, Y. & Lieber, C. M. InAs/InP radial nanowire heterostructures as high electron mobility devices. Nano Lett. 7, 3214–3218 (2007).

    Article  Google Scholar 

Download references


This work was supported by the European Research Council (ERC Grant agreement no. 280043-HybridNano) and by the Agence Nationale de la Recherche (ANR-08-JCJC-0010). R.A. acknowledges support from the Spanish Ministry of Economy and Innovation through grants FIS2009-08744 and FIS2012-33521. The authors thank J-D. Pillet for useful discussions.

Author information




E.J.H.L. and S.D.F. conceived the experiment. X.J. grew the semiconductor NWs under C.M.L.'s supervision. E.J.H.L. fabricated the devices and performed all the measurements under S.D.F.'s supervision. R.A. performed the Hartree–Fock calculations, and M.H. carried out the analytical study of the level-repulsion effect. E.J.H.L., S.D.F., R.A. and M.H. analysed and interpreted the results. All authors co-wrote the manuscript.

Corresponding author

Correspondence to Silvano De Franceschi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1239 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, E., Jiang, X., Houzet, M. et al. Spin-resolved Andreev levels and parity crossings in hybrid superconductor–semiconductor nanostructures. Nature Nanotech 9, 79–84 (2014).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research