Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Large tunable image-charge effects in single-molecule junctions

Abstract

Metal/organic interfaces critically determine the characteristics of molecular electronic devices, because they influence the arrangement of the orbital levels that participate in charge transport. Studies on self-assembled monolayers show molecule-dependent energy-level shifts as well as transport-gap renormalization, two effects that suggest that electric-field polarization in the metal substrate induced by the formation of image charges plays a key role in the alignment of the molecular energy levels with respect to the metal's Fermi energy. Here, we provide direct experimental evidence for an electrode-induced gap renormalization in single-molecule junctions. We study charge transport through single porphyrin-type molecules using electrically gateable break junctions. In this set-up, the position of the occupied and unoccupied molecular energy levels can be followed in situ under simultaneous mechanical control. When increasing the electrode separation by just a few ångströms, we observe a substantial increase in the transport gap and level shifts as high as several hundreds of meV. Analysis of this large and tunable gap renormalization based on atomic charges obtained from density functional theory confirms and clarifies the dominant role of image-charge effects in single-molecule junctions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of the experiments.
Figure 2: Mechanical gating of charge transport in ZnTPPdT junctions.
Figure 3: Level shifts by electrostatic gating.
Figure 4: Level shifts by mechanical gating.
Figure 5: Transport calculation and image-charge model.

Similar content being viewed by others

References

  1. Ishii, H., Sugiyama, K., Ito, E. & Seki, K. Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Adv. Mater. 11, 605–625 (1999).

    Article  CAS  Google Scholar 

  2. Koch, N. Energy levels at interfaces between metals and conjugated organic molecules. J. Phys. Condens. Matter 20, 184008 (2008).

    Article  Google Scholar 

  3. Braun, S., Salaneck, W. R. & Fahlman, M. Energy-level alignment at organic/metal and organic/organic interfaces. Adv. Mater. 21, 1450–1472 (2009).

    Article  CAS  Google Scholar 

  4. Hwang, J., Wan, A. & Kahn, A. Energetics of metal–organic interfaces: new experiments and assessment of the field. Mater. Sci. Eng. R 64, 1–31 (2009).

    Article  Google Scholar 

  5. Lange, I. et al. Band bending in conjugated polymer layers. Phys. Rev. Lett. 106, 216402 (2011).

    Article  Google Scholar 

  6. Broker, B. et al. Density-dependent reorientation and rehybridization of chemisorbed conjugated molecules for controlling interface electronic structure. Phys. Rev. Lett. 104, 246805 (2010).

    Article  CAS  Google Scholar 

  7. Otsuki, J. STM studies on porphyrins. Coord. Chem. Rev. 254, 2311–2341 (2010).

    Article  CAS  Google Scholar 

  8. Ishii, H. et al. Energy level alignment and band bending at model interfaces of organic electroluminescent devices. J. Lumin. 61, 87–89 (2000).

    Google Scholar 

  9. Heimel, G., Romaner, L., Zojer, E. & Bredas, J-L. The interface energetics of self-assembled monolayers on metals. Acc. Chem. Res. 41, 721–729 (2008).

    Article  CAS  Google Scholar 

  10. Bruot, C., Hihath, J. & Tao, N. Mechanically controlled molecular orbital alignment in single molecule junctions. Nature Nanotech. 7, 35–40 (2012).

    Article  CAS  Google Scholar 

  11. Romaner, L., Heimel, G., Gruber, M., Bredas, J-L. & Zojer, E. Stretching and breaking of a molecular junction. Small 2, 1468–1475 (2006).

    Article  CAS  Google Scholar 

  12. Amy, F., Chan, C. & Kahn, A. Polarization at the gold/pentacene interface. Org. Electron. 6, 85–91 (2005).

    Article  CAS  Google Scholar 

  13. Kubatkin, S. et al. Single-electron transistor of a single organic molecule with access to several redox states. Nature 425, 698–701 (2003).

    Article  CAS  Google Scholar 

  14. Osorio, E. et al. Addition energies and vibrational fine structure measured in electromigrated single-molecule junctions based on an oligophenylenevinylene derivative. Adv. Mater. 19, 281–285 (2007).

    Article  CAS  Google Scholar 

  15. Kaasbjerg, K. & Flensberg, K. Strong polarization-induced reduction of addition energies in single-molecule nanojunctions. Nano Lett. 8, 3809–3814 (2008).

    Article  CAS  Google Scholar 

  16. Thygesen, K. S. & Rubio, A. Renormalization of molecular quasiparticle levels at metal–molecule interfaces: trends across binding regimes. Phys. Rev. Lett. 102, 046802 (2009).

    Article  Google Scholar 

  17. Barr, J. D., Stafford, C. A. & Bergfield, J. P. Effective field theory of interacting π electrons. Phys. Rev. B 86, 115403 (2012).

    Article  Google Scholar 

  18. Champagne, A., Pasupathy, A. & Ralph, D. Mechanically adjustable and electrically gated single-molecule transistors. Nano Lett. 5, 305–308 (2005).

    Article  CAS  Google Scholar 

  19. Martin, C. A., van Ruitenbeek, J. M. & van der Zant, H. S. J. Sandwich-type gated mechanical break junctions. Nanotechnology 21, 265201 (2010).

    Article  Google Scholar 

  20. Parks, J. J. et al. Mechanical control of spin states in spin-1 molecules and the underscreened kondo effect. Science 328, 1370–1373 (2010).

    Article  CAS  Google Scholar 

  21. Meisner, J. S. et al. A single-molecule potentiometer. Nano Lett. 11, 1575–1579 (2011).

    Article  CAS  Google Scholar 

  22. Toher, C. et al. Electrical transport through a mechanically gated molecular wire. Phys. Rev. B 83, 155402 (2011).

    Article  Google Scholar 

  23. Kim, Y. et al. Conductance and vibrational states of single-molecule junctions controlled by mechanical stretching and material variation. Phys. Rev. Lett. 106, 196804 (2011).

    Article  Google Scholar 

  24. Van Ruitenbeek, J. M. et al. Adjustable nanofabricated atomic size contacts. Rev. Sci. Instrum. 67, 108–111 (1996).

    Article  CAS  Google Scholar 

  25. Kergueris, C. et al. Electron transport through a metal–molecule–metal junction. Phys. Rev. B 59, 12505–12513 (1999).

    Article  CAS  Google Scholar 

  26. Reichert, J., Ochs, R., Beckmann, D., Weber, H. B., Mayor, M. & von Lohneysen, H. Driving current through single organic molecules. Phys. Rev. Lett. 88, 176804 (2002).

    Article  CAS  Google Scholar 

  27. Dulić, D. et al. One-way optoelectronic switching of photochromic molecules on gold. Phys. Rev. Lett. 91, 207402 (2003).

    Article  Google Scholar 

  28. Martin, C. et al. Fullerene-based anchoring groups for molecular electronics. J. Am. Chem. Soc. 130, 13198–13199 (2008).

    Article  CAS  Google Scholar 

  29. Ruben, M. et al. Charge transport through a cardan-joint molecule. Small 4, 2229–2235 (2008).

    Article  CAS  Google Scholar 

  30. Wu, S. et al. Molecular junctions based on aromatic coupling. Nature Nanotech. 3, 569–574 (2008).

    Article  CAS  Google Scholar 

  31. Cuevas, J. C. & Scheer, E. Molecular Electronics: An Introduction to Theory and Experiment Ch. 13 (World Scientific, 2010).

    Book  Google Scholar 

  32. Perrin, M. et al. Charge transport in a zinc-porphyrin single-molecule junction. Beilstein J. Nanotechnol. 2, 714–719 (2011).

    Article  Google Scholar 

  33. Dulić, D. et al. Controlled stability of molecular junctions. Angew. Chem. Int. Ed. 48, 8273–8276 (2009).

    Article  Google Scholar 

  34. Perrin, M. et al. Influence of the chemical structure on the stability and conductance of porphyrin single-molecule junctions. Angew. Chem. Int. Ed. 50, 11223–11226 (2011).

    Article  CAS  Google Scholar 

  35. Verzijl, C. J. O. & Thijssen, J. M. A DFT-based molecular transport implementation in ADF/band. J. Phys. Chem. C 116, 24393–24412 (2012).

    Article  CAS  Google Scholar 

  36. Xue, Y. & Ratner, M. Microscopic theory of single-electron tunneling through molecular-assembled metallic nanoparticles. Phys. Rev. B 68, 115406 (2003).

    Article  Google Scholar 

  37. Nara, J., Geng, W. T., Kino, H., Kobayashi, N. & Ohno, T. Theoretical investigation on electron transport through an organic molecule: effect of the contact structure. J. Chem. Phys. 121, 6485–6492 (2004).

    Article  CAS  Google Scholar 

  38. Pontes, R. B., Rocha, A. R., Sanvito, S., Fazzio, A. & da Silva, A. J. R. Ab initio calculations of structural evolution and conductance of benzene-1,4-dithiol on gold leads. ACS Nano 5, 795–804 (2011).

    Article  CAS  Google Scholar 

  39. Garcia-Lastra, J. M., Rostgaard, C., Rubio, A. & Thygesen, K. S. Polarization-induced renormalization of molecular levels at metallic and semiconducting surfaces. Phys. Rev. B 80, 245427 (2009).

    Article  Google Scholar 

  40. Myohanen, P., Tuovinen, R., Korhonen, T., Stefanucci, G. & van Leeuwen, R. Image charge dynamics in time-dependent quantum transport. Phys. Rev. B 85, 075105 (2012).

    Article  Google Scholar 

  41. Martin, R. M. Electronic Structure: Basic Theory and Practical Methods Ch. 10 (Cambridge Univ. Press, 2004).

  42. Smith, N., Chen, C. & Weinert, M. Distance of the image plane from metal surfaces. Phys. Rev. B 40, 7565–7573 (1989).

    Article  CAS  Google Scholar 

  43. Quek, S. et al. Amine–gold linked single-molecule circuits: experiment and theory. Nano Lett. 11, 3477–3482 (2007).

    Article  Google Scholar 

  44. Kaasbjerg, K. & Flensberg, K. Image charge effects in single-molecule junctions: breaking of symmetries and negative-differential resistance in a benzene single-electron transistor. Phys. Rev. B 84, 115457 (2011).

    Article  Google Scholar 

  45. Neaton, J. B., Hybertsen, M. S. & Louie, S. G. Renormalization of molecular electronic levels at metal–molecule interfaces. Phys. Rev. Lett. 97, 216405 (2006).

    Article  CAS  Google Scholar 

  46. Mowbray, D. J., Jones, G. & Thygesen, K. S. Influence of functional groups on charge transport in molecular junctions. J. Chem. Phys. 128, 111103 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was carried out with financial support from the Dutch Foundation for Fundamental Research on Matter (FOM) and the European Union Seventh Framework Programme (FP7/2007-2013, under grant agreement no 270369, ‘ELFOS’). The authors would like to thank R. van Egmond for expert technical support and J. S. Seldenthuis for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

D.D. and H.v.d.Z. designed the project. C.M., H.v.d.Z. and J.v.R. designed the set-up and the devices. M.P. and C.M. fabricated the devices. A.S., R.E. and J.v.E provided the molecules. M.P and D.D. performed the experiments. C.V., M.P. and J.T. performed the calculations. M.P., C.V., D.D., J.T. and H.v.d.Z. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Herre S. J. van der Zant.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3015 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perrin, M., Verzijl, C., Martin, C. et al. Large tunable image-charge effects in single-molecule junctions. Nature Nanotech 8, 282–287 (2013). https://doi.org/10.1038/nnano.2013.26

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.26

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing