Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A synthetic DNA motor that transports nanoparticles along carbon nanotubes

Subjects

Abstract

Intracellular protein motors have evolved to perform specific tasks critical to the function of cells such as intracellular trafficking and cell division1,2. Kinesin and dynein motors, for example, transport cargoes in living cells by walking along microtubules powered by adenosine triphosphate hydrolysis3,4. These motors can make discrete 8 nm centre-of-mass steps and can travel over 1 µm by changing their conformations during the course of adenosine triphosphate binding, hydrolysis and product release5,6. Inspired by such biological machines, synthetic analogues have been developed including self-assembled DNA walkers that can make stepwise movements on RNA/DNA substrates7,8,9,10,11,12 or can function as programmable assembly lines13. Here, we show that motors based on RNA-cleaving DNA enzymes14 can transport nanoparticle cargoes—CdS nanocrystals in this case—along single-walled carbon nanotubes. Our motors extract chemical energy from RNA molecules decorated on the nanotubes and use that energy to fuel autonomous, processive walking through a series of conformational changes along the one-dimensional track. The walking is controllable and adapts to changes in the local environment, which allows us to remotely direct ‘go’ and ‘stop’ actions. The translocation of individual motors can be visualized in real time using the visible fluorescence of the cargo nanoparticle and the near-infared emission of the carbon-nanotube track. We observed unidirectional movements of the molecular motors over 3 µm with a translocation velocity on the order of 1 nm min−1 under our experimental conditions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The DNAzyme-based molecular motor that moves along a carbon-nanotube track.
Figure 2: Molecular motor movement in TAE buffer at 22 °C and pH 8.0.
Figure 3: Local environmental effects on the mobility of the molecular motors in TAE buffer.
Figure 4: Experimental and theoretical translocation kinetics of the molecular motor.

References

  1. 1

    Vale, R. D. The molecular motor toolbox for intracellular transport. Cell 112, 467–480 (2003).

    CAS  Article  Google Scholar 

  2. 2

    Finer, J. T., Simmons, R. M. & Spudich, J. A. Single myosin molecule mechanics—piconewton forces and nanometre steps. Nature 368, 113–119 (1994).

    CAS  Article  Google Scholar 

  3. 3

    Hirokawa, N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519–526 (1998).

    CAS  Article  Google Scholar 

  4. 4

    Howard, J., Hudspeth, A. J. & Vale, R. D. Movement of microtubules by single kinesin molecules. Nature 342, 154–158 (1989).

    CAS  Article  Google Scholar 

  5. 5

    Block, S. M., Goldstein, L. S. B. & Schnapp, B. J. Bead movement by single kinesin molecules studied with optical tweezers. Nature 348, 348–352 (1990).

    CAS  Article  Google Scholar 

  6. 6

    Yildiz, A., Tomishige, M., Vale, R. D. & Selvin, P. R. Kinesin walks hand-over-hand. Science 303, 676–678 (2004).

    CAS  Article  Google Scholar 

  7. 7

    Bath, J., Green, S. J. & Turberfield, A. J. A Free-running DNA motor powered by a nicking enzyme. Angew. Chem. Int. Ed. 44, 4358–4361 (2005).

    CAS  Article  Google Scholar 

  8. 8

    Yin, P., Choi, H. M. T., Calvert, C. R. & Pierce, N. A. Programming biomolecular self-assembly pathways. Nature 451, 318–322 (2008).

    CAS  Article  Google Scholar 

  9. 9

    Omabegho, T., Sha, R. & Seeman, N. C. A bipedal DNA Brownian motor with coordinated legs. Science 324, 67–71 (2009).

    CAS  Article  Google Scholar 

  10. 10

    He, Y. & Liu, D. R. Autonomous multistep organic synthesis in a single isothermal solution mediated by a DNA walker. Nature Nanotech. 5, 778–782 (2010).

    CAS  Article  Google Scholar 

  11. 11

    Lund, K. et al. Molecular robots guided by prescriptive landscapes. Nature 465, 206–210 (2010).

    CAS  Article  Google Scholar 

  12. 12

    Wickham, S. F. J. et al. Direct observation of stepwise movement of a synthetic molecular transporter. Nature Nanotech. 6, 166–169 (2011).

    CAS  Article  Google Scholar 

  13. 13

    Gu, H. Z., Chao, J., Xiao, S. J. & Seeman, N. C. A proximity-based programmable DNA nanoscale assembly line. Nature 465, 202–205 (2010).

    CAS  Article  Google Scholar 

  14. 14

    Santoro, S. W. & Joyce, G. F. A general purpose RNA-cleaving DNA enzyme. Proc. Natl Acad. Sci. USA 94, 4262–4266 (1997).

    CAS  Article  Google Scholar 

  15. 15

    Santoro, S. W. & Joyce, G. F. Mechanism and utility of an RNA-cleaving DNA enzyme. Biochemistry 37, 13330–13342 (1998).

    CAS  Article  Google Scholar 

  16. 16

    Tian, Y., He, Y., Chen, Y., Yin, P. & Mao, C. D. Molecular devices—a DNAzyme that walks processively and autonomously along a one-dimensional track. Angew. Chem. Int. Ed. 44, 4355–4358 (2005).

    CAS  Article  Google Scholar 

  17. 17

    Zhang, D. Y. & Seelig, G. Dynamic DNA nanotechnology using strand-displacement reactions. Nature Chem. 3, 103–113 (2011).

    CAS  Article  Google Scholar 

  18. 18

    Block, S. M. Kinesin motor mechanics: binding, stepping, tracking, gating, and limping. Biophys. J. 92, 2986–2995 (2007).

    CAS  Article  Google Scholar 

  19. 19

    Jeng, E. S., Moll, A. E., Roy, A. C., Gastala, J. B. & Strano, M. S. Detection of DNA hybridization using the near-infrared band-gap fluorescence of single-walled carbon nanotubes. Nano Lett. 6, 371–375 (2006).

    CAS  Article  Google Scholar 

  20. 20

    Cha, T.-G. et al. Understanding oligonucleotide-templated nanocrystals: growth mechanisms and surface properties. ACS Nano 6, 8136–8143 (2012).

    CAS  Article  Google Scholar 

  21. 21

    Tsyboulski, D. A., Bachilo, S. M. & Weisman, R. B. Versatile visualization of individual single-walled carbon nanotubes with near-infrared fluorescence microscopy. Nano Lett. 5, 975–979 (2005).

    CAS  Article  Google Scholar 

  22. 22

    Cognet, L. et al. Stepwise qeunching of exciton fluorescence in carbon nanotubes by single-molecule reactions. Science 316, 1465–1468 (2007).

    CAS  Article  Google Scholar 

  23. 23

    Dahan, M. et al. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302, 442–445 (2003).

    CAS  Article  Google Scholar 

  24. 24

    Carlson, L. J. & Krauss, T. D. Photophysics of individual single-walled carbon nanotubes. Acc. Chem. Res. 41, 235–243 (2008).

    CAS  Article  Google Scholar 

  25. 25

    Alivisatos, A. P. The use of nanocrystals in biological detection. Nature Biotechnol. 22, 47–52 (2004).

    CAS  Article  Google Scholar 

  26. 26

    Choi, J. H. & Strano, M. S. Solvatochromism in single-walled carbon nanotubes. Appl. Phys. Lett. 90, 223114 (2007).

    Article  Google Scholar 

  27. 27

    Bachilo, S. M. et al. Structure-assigned optical spectra of single walled carbon nanotubes. Science 298, 2361–2366 (2002).

    CAS  Article  Google Scholar 

  28. 28

    Schubert, S. et al. RNA cleaving ‘10–23’ DNAzymes with enhanced stability and activity. Nucleic Acids Res. 31, 5982–5992 (2003).

    CAS  Article  Google Scholar 

  29. 29

    Kou, S. C., Cherayil, B. J., Min, W., English, B. P. & Xie, X. S. Single-molecule Michaelis–Menten equations. J. Phys. Chem. B 109, 19068–19081 (2005).

    CAS  Article  Google Scholar 

  30. 30

    Panyutin, I. G. & Hsieh, P. The kinetics of spontaneous DNA branch migration. Proc. Natl Acad. Sci. USA 91, 2021–2025 (1994).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank H.N. Robinson and M.C. Akatay for help with synthesis and TEM characterization of CdS nanocrystals. This work was supported by the US Office of Naval Research (awards N00014-11-1-0220 and N00014-12-1-0829). J.H.C. acknowledges a National Science Foundation Career award.

Author information

Affiliations

Authors

Contributions

J.H.C. and C.M. conceived the idea. J.H.C. and T.G.C. designed the research. T.G.C. synthesized materials and performed the motor translocation experiments with assistance from J.P. and J.S. H.C. and J.P. collected AFM images. C.M. and X.L designed the oligonucleotide motifs. T.G.C. and J.H.C. developed the kinetic model and analysed the data. J.H.C. and T.G.C. co-wrote the paper with input from all authors.

Corresponding author

Correspondence to Jong Hyun Choi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 4212 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cha, TG., Pan, J., Chen, H. et al. A synthetic DNA motor that transports nanoparticles along carbon nanotubes. Nature Nanotech 9, 39–43 (2014). https://doi.org/10.1038/nnano.2013.257

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research