Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices


Single-walled carbon nanotubes are uniquely identified by a pair of chirality indices (n,m), which dictate the physical structures and electronic properties of each species1. Carbon nanotube research is currently facing two outstanding challenges: achieving chirality-controlled growth and understanding chirality-dependent device physics2,3,4,5,6. Addressing these challenges requires, respectively, high-throughput determination of the nanotube chirality distribution on growth substrates and in situ characterization of the nanotube electronic structure in operating devices. Direct optical imaging and spectroscopy techniques are well suited for both goals7,8,9, but their implementation at the single nanotube level has remained a challenge due to the small nanotube signal and unavoidable environment background10,11,12,13,14,15,16,17. Here, we report high-throughput real-time optical imaging and broadband in situ spectroscopy of individual carbon nanotubes on various substrates and in field-effect transistor devices using polarization-based microscopy combined with supercontinuum laser illumination. Our technique enables the complete chirality profiling of hundreds of individual carbon nanotubes, both semiconducting and metallic, on a growth substrate. In devices, we observe that high-order nanotube optical resonances are dramatically broadened by electrostatic doping, an unexpected behaviour that points to strong interband electron–electron scattering processes that could dominate ultrafast dynamics of excited states in carbon nanotubes.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Scheme of polarization-based optical microscopy for single-nanotube imaging and spectroscopy.
Figure 2: Optical imaging and spectroscopy of an individual nanotube on substrates and in devices.
Figure 3: High-throughput chirality profiling of 402 single-walled carbon nanotubes from one growth condition.
Figure 4: Gate-variable nanotube optical transitions in field-effect devices.


  1. Dresselhaus, M. S., Dresselhaus, G. & Avouris, P. Carbon Nanotubes: Synthesis, Structure, Properties, and Applications (Springer, 2001).

    Book  Google Scholar 

  2. Javey, A. et al. Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003).

    Article  CAS  Google Scholar 

  3. Chen, J. et al. Bright infrared emission from electrically induced excitons in carbon nanotubes. Science 310, 1171–1174 (2005).

    Article  CAS  Google Scholar 

  4. Gabor, N. M. et al. Extremely efficient multiple electron–hole pair generation in carbon nanotube photodiodes. Science 325, 1367–1371 (2009).

    Article  CAS  Google Scholar 

  5. Hertel, T. Carbon nanotubes: a brighter future. Nature Photon. 4, 77–78 (2010).

    Article  CAS  Google Scholar 

  6. Dang, X. N. et al. Virus-templated self-assembled single-walled carbon nanotubes for highly efficient electron collection in photovoltaic devices. Nature Nanotech. 6, 377–384 (2011).

    Article  CAS  Google Scholar 

  7. Lindfors, K., Kalkbrenner, T., Stoller, P. & Sandoghdar, V. Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy. Phys. Rev. Lett. 93, 037401 (2004).

    Article  CAS  Google Scholar 

  8. Celebrano, M., Kukura, P., Renn, A. & Sandoghdar, V. Single-molecule imaging by optical absorption. Nature Photon. 5, 95–98 (2010).

    Article  Google Scholar 

  9. Kukura, P., Celebrano, M., Renn, A. & Sandoghdar, V. Imaging a single quantum dot when it is dark. Nano Lett. 9, 926–929 (2008).

    Article  Google Scholar 

  10. Bachilo, S. M. et al. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002).

    Article  CAS  Google Scholar 

  11. Sfeir, M. Y. et al. Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering. Science 306, 1540–1543 (2004).

    Article  CAS  Google Scholar 

  12. Liu, K. et al. An atlas of carbon nanotube optical transitions. Nature Nanotech. 7, 325–329 (2012).

    Article  CAS  Google Scholar 

  13. Joh, D. Y. et al. On-chip Rayleigh imaging and spectroscopy of carbon nanotubes. Nano Lett. 11, 1–7 (2011).

    Article  CAS  Google Scholar 

  14. Berciaud, S. et al. Absorption spectroscopy of individual single-walled carbon nanotubes. Nano Lett. 7, 1203–1207 (2007).

    Article  CAS  Google Scholar 

  15. Lefebvre, J. & Finnie, P. Polarized light microscopy and spectroscopy of individual single-walled carbon nanotubes. Nano Res. 4, 788–794 (2011).

    Article  CAS  Google Scholar 

  16. Jorio, A. et al. Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys. Rev. Lett. 86, 1118–1121 (2001).

    Article  CAS  Google Scholar 

  17. Araujo, P. T. et al. Third and fourth optical transitions in semiconducting carbon nanotubes. Phys. Rev. Lett. 98, 067401 (2007).

    Article  Google Scholar 

  18. Robinson, P. C. & Bradbury, S. Qualitative Polarized-Light Microscopy (Oxford Univ. Press, 1992).

    Google Scholar 

  19. Fujiwara, H., Spectroscopic Ellipsometry: Principles and Applications (Wiley, 2007).

    Book  Google Scholar 

  20. Nanot, S. et al. Broadband, polarization-sensitive photodetector based on optically-thick films of macroscopically long, dense, and aligned carbon nanotubes. Sci. Rep. 3, 1335 (2013).

    Article  Google Scholar 

  21. Miyauchi, Y., Oba, M. & Maruyama, S. Cross-polarized optical absorption of single-walled nanotubes by polarized photoluminescence excitation spectroscopy. Phys. Rev. B 74, 205440 (2006).

    Article  Google Scholar 

  22. Islam, M. F. et al. Direct measurement of the polarized optical absorption cross section of single-wall carbon nanotubes. Phys. Rev. Lett. 93, 037404 (2004).

    Article  CAS  Google Scholar 

  23. Brody, J., Weiss, D. & Berland, K. Reflection of a polarized light cone. Am. J. Phys. 81, 24–27 (2013).

    Article  Google Scholar 

  24. Zhou, W. W., Zhan, S. T., Ding, L. & Liu, J. General rules for selective growth of enriched semiconducting single walled carbon nanotubes with water vapor as in situ etchant. J. Am. Chem. Soc. 134, 14019–14026 (2012).

    Article  CAS  Google Scholar 

  25. Tsang, J. C. et al. Doping and phonon renormalization in carbon nanotubes. Nature Nanotech. 2, 725–730 (2007).

    Article  CAS  Google Scholar 

  26. O'Connell, M. J., Eibergen, E. E. & Doorn, S. K. Chiral selectivity in the charge-transfer bleaching of single-walled carbon-nanotube spectra. Nature Mater. 4, 412–418 (2005).

    Article  CAS  Google Scholar 

  27. Wang, F. et al. Gate-variable optical transitions in graphene. Science 320, 206–209 (2008).

    Article  CAS  Google Scholar 

  28. Wang, F. et al. Interactions between individual carbon nanotubes studied by Rayleigh scattering spectroscopy. Phys. Rev. Lett. 96, 167401 (2006).

    Article  Google Scholar 

  29. Steiner, M. et al. Gate-variable light absorption and emission in a semiconducting carbon nanotube. Nano Lett. 9, 3477–3481 (2009).

    Article  CAS  Google Scholar 

  30. Santos, S. M. et al. All-optical trion generation in single-walled carbon nanotubes. Phys. Rev. Lett. 107, 187401 (2011).

    Article  Google Scholar 

  31. Xu, X. D. et al. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10, 562–566 (2010).

    Article  CAS  Google Scholar 

  32. Huang, S. M., Cai, X. Y. & Liu, J. Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. J. Am. Chem. Soc. 125, 5636–5637 (2003).

    Article  CAS  Google Scholar 

  33. Steiner, M. et al. How does the substrate affect the Raman and excited state spectra of a carbon nanotube? Appl. Phys. A 96, 271–282 (2009).

    Article  CAS  Google Scholar 

Download references


Nanotube synthesis and optical spectroscopy were supported by a National Science Foundation (NSF) CAREER grant (no. 0846648), the NSF Center for Integrated Nanomechanical Systems (no. EEC-0832819) and NSF grant no. CHE-1213469. Support for device fabrication and characterization instrumentation was provided by the Director, Office of Energy Research, Materials Sciences and Engineering Division, of the US Department of Energy (contract nos. DE-SC0003949 and DE-AC02-05CH11231). J.L. and W.Z. also acknowledge support from Duke SMiF (Shared Materials Instrumentation Facilities).

Author information

Authors and Affiliations



F.W., K.L. and X.H. conceived the experiment. K.L., X.H. and F.W. carried out optical measurements. X.H. and K.L. carried out electrical measurements. Q.Z., K.L. and A.Z. fabricated and characterized the device. J.L., W.Z. and J.L. grew nanotubes for chirality profiling. K.L., Q.Z. and A.Z. grew nanotubes for the device. C.J., E.G. and F.W. performed the theoretical analysis. All authors discussed the results and wrote the manuscript.

Corresponding author

Correspondence to Feng Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 886 kb)

Supplementary movie 1

Supplementary movie 1 (MOV 9450 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, K., Hong, X., Zhou, Q. et al. High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices. Nature Nanotech 8, 917–922 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research