Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures

Abstract

Magnetic skyrmions are topologically stable spin configurations, which usually originate from chiral interactions known as Dzyaloshinskii–Moriya interactions. Skyrmion lattices were initially observed in bulk non-centrosymmetric crystals, but have more recently been noted in ultrathin films, where their existence is explained by interfacial Dzyaloshinskii–Moriya interactions induced by the proximity to an adjacent layer with strong spin–orbit coupling. Skyrmions are promising candidates as information carriers for future information-processing devices due to their small size (down to a few nanometres) and to the very small current densities needed to displace skyrmion lattices. However, any practical application will probably require the creation, manipulation and detection of isolated skyrmions in magnetic thin-film nanostructures. Here, we demonstrate by numerical investigations that an isolated skyrmion can be a stable configuration in a nanostructure, can be locally nucleated by injection of spin-polarized current, and can be displaced by current-induced spin torques, even in the presence of large defects.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Isolated skyrmion in a nanodisk (diameter, 80 nm).
Figure 2: Injection of skyrmions in a nanodisk.
Figure 3: Current-induced motion of skyrmions in a nanotrack.
Figure 4: Pinning of the current-induced motion of skyrmions by defects in a 40-nm-wide nanotrack.

Similar content being viewed by others

References

  1. Chappert, C., Fert, A. & Van Dau, F. N. The emergence of spin electronics in data storage. Nature Mater. 6, 813–823 (2007).

    Article  CAS  Google Scholar 

  2. Muhlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    Article  CAS  Google Scholar 

  3. Yu, X. Z. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).

    Article  CAS  Google Scholar 

  4. Heinze, S. et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nature Phys. 7, 713–718 (2011)

    Article  CAS  Google Scholar 

  5. Jonietz, F. et al. Spin transfer torques in MnSi at ultralow current densities. Science 330, 1648–1651 (2010).

    Article  CAS  Google Scholar 

  6. Iwasaki, J., Mochizuki, M. & Nagaosa, N. Universal current–velocity relation of skyrmion motion in chiral magnets. Nature Commun. 4, 1463 (2013).

    Article  Google Scholar 

  7. Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nature Nanotech. 8, 152–156 (2013).

    Article  CAS  Google Scholar 

  8. Kiselev, N. S., Bogdanov, A. N., Schäfer, R. & Rößler, U. K. Chiral skyrmions in thin magnetic films: new objects for magnetic storage technologies? J. Phys. D 44, 392001 (2011).

    Article  Google Scholar 

  9. Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

    Article  CAS  Google Scholar 

  10. Rössler, U. K., Bogdanov, A. N. & Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 442, 797–801 (2006).

    Article  Google Scholar 

  11. Dzyaloshinskii, I. A thermodynamic theory of ‘weak’ ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958).

    Article  Google Scholar 

  12. Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

    Article  CAS  Google Scholar 

  13. Crépieux, A. & Lacroix, C. Dzyaloshinskii–Moriya interactions induced by symmetry breaking at a surface. J. Magn. Magn. Mater. 182, 341–349 (1998).

    Article  Google Scholar 

  14. Skyrme, T. H. R. A unified field theory of mesons and baryons. Nucl. Phys. 31, 556–569 (1962).

    Article  CAS  Google Scholar 

  15. Wright, D. C. & Mermin, N. D. Crystalline liquids the blue phases. Rev. Mod. Phys. 61, 385–432 (1989).

    Article  CAS  Google Scholar 

  16. Al'Khawaja, U. & Stoof, H. T. C. Skyrmions in a ferromagnetic Bose–Einstein condensate. Nature 411, 918–920 (2001).

    Article  CAS  Google Scholar 

  17. Yu, X. Z. et al. Skyrmion flow near room temperature and ultralow current density. Nature Commun. 3, 988 (2012).

    Article  CAS  Google Scholar 

  18. Huang, S. X. & Chien, C. L. Extended skyrmion phase in FeGe (111) thin films. Phys. Rev. Lett. 108, 267201 (2012).

    Article  CAS  Google Scholar 

  19. Ferriani, P. et al Atomic scale spin spiral with a unique rotational sense: Mn monolyer on W(001). Phys. Rev. Lett. 101, 027201 (2008).

    Article  CAS  Google Scholar 

  20. Heide, M., Bihlmayer, G. & Blügel, S. Dzyaloshinskii–Moriya interaction accounting for the orientation of magnetic domains in ultrathin films: Fe/W (110). Phys. Rev. B 78, 140403 (2008).

    Article  Google Scholar 

  21. Fert, A. Magnetic and transport properties of metallic multilayers. Metallic Multilayers 59–60, 439 (1990).

    Google Scholar 

  22. Fert, A. & Levy, P. M. Role of anisotropic exchange interactions in determining the properties of spin-glasses. Phys. Rev. Lett. 44, 1538–1541 (1980).

    Article  CAS  Google Scholar 

  23. Sun, L. et al. Creating an artificial two-dimensional skyrmion crystal by nanopatterning. Phys. Rev. Lett. 110, 167201 (2013).

    Article  CAS  Google Scholar 

  24. Chappert, C. et al. Planar patterned magnetic media obtained by ion irradiation. Science 280, 1919–1922 (1998).

    Article  CAS  Google Scholar 

  25. Donahue, M. J. & Porter, D. OOMMF (NIST); http://math.nist.gov/oommf

  26. http://www.lps.u-psud.fr/spip.php?article2252

  27. Rohart, S. & Thiaville, A. Micromagnetism of ultrathin film nanostructures in the presence of Dzyaloshinskii–Moriya interactions. Preprint at http://arXiv.org/abs/1310.0666 (2013).

  28. Kirakosyan, A. S. & Pokrovsky, V. L. From bubble to skyrmion: dynamic transformation mediated by a strong magnetic tip. J. Magn. Magn. Mater. 305, 413–422 (2006).

    Article  CAS  Google Scholar 

  29. Mohseni, S. M. et al. Spin torque-generated magnetic droplet solitons. Science 339, 1295–1298 (2013).

    Article  CAS  Google Scholar 

  30. Thiaville, A., Rohart, S., Jué, É., Cros, V. & Fert, A. Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films. Europhys. Lett. 100, 57002 (2012).

    Article  Google Scholar 

  31. Devolder, T. et al. Damping of CoxFe80−xB20 ultrathin films with perpendicular magnetic anisotropy. Appl. Phys. Lett. 102, 022407 (2013).

    Article  Google Scholar 

  32. Moutafis, C., Komineas, S. & Bland, J. A. C. Dynamics and switching processes for magnetic bubbles in nanoelements. Phys. Rev. B 79, 224429 (2009).

    Article  Google Scholar 

  33. Nakatani, Y. & Hayashi, N. Computer simulation of annihilation process of vertical Bloch line pair. IEEE Trans. Magn. 29, 2587–2589 (1993).

    Article  CAS  Google Scholar 

  34. Thiaville, A., Garcia, J. M., Dittrich, R., Miltat, J. & Schrefl, T. Micromagnetic study of Bloch point mediated vortex core reversal. Phys. Rev. B 67, 094410 (2003).

    Article  Google Scholar 

  35. Milde, P. et al. Unwinding of a skyrmion lattice by magnetic monopoles. Science 340, 1076–1080 (2013).

    Article  CAS  Google Scholar 

  36. Romming, N. et al. Writing and deleting single magnetic skyrmions, Science 341, 636–639 (2013).

    Article  CAS  Google Scholar 

  37. Schulz, T. et al. Emergent electrodynamics of skyrmions in a chiral magnet. Nature Phys. 8, 301–304 (2012).

    Article  CAS  Google Scholar 

  38. Everschor, K. et al. Rotating skyrmion lattices by spin torques and field or temperature gradients. Phys. Rev. B 86, 054432 (2012).

    Article  Google Scholar 

  39. Thiaville, A., Nakatani, Y., Miltat, J. & Suzuki, Y. Micromagnetic understanding of current-driven domain wall motion in patterned nanowires. Europhys. Lett. 69, 990–996 (2005).

    Article  CAS  Google Scholar 

  40. Khvalkovskiy, A. V. et al. Matching domain-wall configuration and spin–orbit torques for efficient domain-wall motion. Phys. Rev. B 87, 020402 (2013).

    Article  Google Scholar 

  41. Khvalkovskiy, A. et al. High domain wall velocities due to spin currents perpendicular to the plane. Phys. Rev. Lett. 102, 067206 (2009).

    Article  CAS  Google Scholar 

  42. Chanthbouala, A. et al. Vertical-current-induced domain-wall motion in MgO-based magnetic tunnel junctions with low current densities. Nature Phys. 7, 626–630 (2011).

    Article  CAS  Google Scholar 

  43. Thiele, A. Steady state motion of magnetic domains. Phys. Rev. Lett. 30, 230–233 (1973).

    Article  Google Scholar 

  44. Miron, I. M. et al. Fast current-induced domain-wall motion controlled by the Rashba effect. Nature Mater. 10, 419–423 (2011).

    Article  CAS  Google Scholar 

  45. Emori, S. et al. Current-driven dynamics of chiral ferromagnetic domain walls. Nature Mater. 12, 611–616 (2013).

    Article  CAS  Google Scholar 

  46. Ryu, K. S. et al. Chiral spin torque at magnetic domain walls. Nature Nanotech. 8, 527–533 (2013).

    Article  CAS  Google Scholar 

  47. Metaxas, P. J. et al. Creep and flow regimes of magnetic domain-wall motion in ultrathin Pt/Co/Pt films with perpendicular anisotropy. Phys. Rev. Lett. 99, 217208 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Reyren, C. Luchaire-Moreau, J. M. George and J. V. Kim for discussions, C. Deranlot for material deposition, and N. Van Horne, K. Bouzehouane and R. Mattana for magnetic measurements.

Author information

Authors and Affiliations

Authors

Contributions

V.C. and A.F. conceived and coordinated the project. J.S. performed the micromagnetic simulations. S.R. implemented the DMI in the OOMMF code. J.S., V.C., S.R, A.T. and A.F. interpreted the results. J.S, V.C. and A.F. prepared the manuscript. All authors commented on the manuscript.

Corresponding author

Correspondence to V. Cros.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 831 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sampaio, J., Cros, V., Rohart, S. et al. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nature Nanotech 8, 839–844 (2013). https://doi.org/10.1038/nnano.2013.210

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.210

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing