Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A general strategy for the DNA-mediated self-assembly of functional nanoparticles into heterogeneous systems

This article has been updated

Abstract

Nanoparticles coated with DNA molecules can be programmed to self-assemble into three-dimensional superlattices. Such superlattices can be made from nanoparticles with different functionalities and could potentially exploit the synergetic properties of the nanoscale components. However, the approach has so far been used primarily with single-component systems. Here, we report a general strategy for the creation of heterogeneous nanoparticle superlattices using DNA and carboxylic-based conjugation. We show that nanoparticles with all major types of functionality—plasmonic (gold), magnetic (Fe2O3), catalytic (palladium) and luminescent (CdSe/Te@ZnS and CdSe@ZnS)—can be incorporated into binary systems in a rational manner. We also examine the effect of nanoparticle characteristics (including size, shape, number of DNA per particle and DNA flexibility) on the phase behaviour of the heterosystems, and demonstrate that the assembled materials can have novel optical and field-responsive properties.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: DNA conjugation and assembly of functional nanoparticles.
Figure 2: Systems of palladium and gold nanoparticles.
Figure 3: Systems of FeO and gold nanoparticles.
Figure 4: Systems of quantum dots and gold nanoparticles.
Figure 5: Phase diagram and interparticle distance for heterogeneous systems.

Change history

  • 23 October 2013

    In the version of this Article originally published online in three instances 'CdS' should have read 'CdSe'. This error has now been corrected in all versions of the Article.

References

  1. Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549–552 (2008).

    Article  CAS  Google Scholar 

  2. Park, S. Y. et al. DNA-programmable nanoparticle crystallization. Nature 451, 553–556 (2008).

    Article  CAS  Google Scholar 

  3. Courty, A., Mermet, A., Albouy, P. A., Duval, E. & Pileni, M. P. Vibrational coherence of self-organized silver nanocrystals in f.c.c. supra-crystals. Nature Mater. 4, 395–398 (2005).

    Article  CAS  Google Scholar 

  4. Sun, S. H., Murray, C. B., Weller, D., Folks, L. & Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989–1992 (2000).

    Article  CAS  Google Scholar 

  5. Cheon, J. et al. Magnetic superlattices and their nanoscale phase transition effects. Proc. Natl Acad. Sci. USA 103, 3023–3027 (2006).

    Article  CAS  Google Scholar 

  6. Maye, M. M., Nykypanchuk, D., Cuisinier, M., van der Lelie, D. & Gang, O. Stepwise surface encoding for high-throughput assembly of nanoclusters. Nature Mater. 8, 388–391 (2009).

    Article  CAS  Google Scholar 

  7. Xiong, H. M., Sfeir, M. Y. & Gang, O. Assembly, structure and optical response of three-dimensional dynamically tunable multicomponent superlattices. Nano Lett. 10, 4456–4462 (2010).

    Article  CAS  Google Scholar 

  8. Kuzyk, A. et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483, 311–314 (2012).

    Article  CAS  Google Scholar 

  9. Severac, F., Alphonse, P., Esteve, A., Bancaud, A. & Rossi, C. High-energy Al/CuO nanocomposites obtained by DNA-directed assembly. Adv. Funct. Mater. 22, 323–329 (2012).

    Article  CAS  Google Scholar 

  10. Podsiadlo, P. et al. High-pressure structural stability and elasticity of supercrystals self-assembled from nanocrystals. Nano Lett. 11, 579–588 (2011).

    Article  CAS  Google Scholar 

  11. Redl, F. X., Cho, K. S., Murray, C. B. & O'Brien, S. Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots. Nature 423, 968–971 (2003).

    Article  CAS  Google Scholar 

  12. Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O'Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006).

    Article  CAS  Google Scholar 

  13. Kalsin, A. M. et al. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 312, 420–424 (2006).

    Article  CAS  Google Scholar 

  14. Evers, W. H., Friedrich, H., Filion, L., Dijkstra, M. & Vanmaekelbergh, D. Observation of a ternary nanocrystal superlattice and its structural characterization by electron tomography. Angew. Chem. Int. Ed. 48, 9655–9657 (2009).

    Article  CAS  Google Scholar 

  15. Maye, M. M., Gang, O. & Cotlet, M. Photoluminescence enhancement in CdSe/ZnS–DNA linked-Au nanoparticle heterodimers probed by single molecule spectroscopy. Chem. Commun. 46, 6111–6113 (2010).

    Article  CAS  Google Scholar 

  16. Hiroi, K., Komatsu, K. & Sato, T. Superspin glass originating from dipolar interaction with controlled interparticle distance among γ-Fe2O3 nanoparticles with silica shells. Phys. Rev. B 83, 224423 (2011).

    Article  Google Scholar 

  17. Vermolen, E. C. M. et al. Fabrication of large binary colloidal crystals with a NaCl structure. Proc. Natl Acad. Sci. USA 106, 16063–16067 (2009).

    Article  CAS  Google Scholar 

  18. Gardner, D. F., Evans, J. S. & Smalyukh, I. I. Towards reconfigurable optical metamaterials: colloidal nanoparticle self-assembly and self-alignment in liquid crystals. Mol. Cryst. Liq. Cryst. 545, 1227–1245 (2011).

    Article  Google Scholar 

  19. Alivisatos, A. P. et al. Organization of ‘nanocrystal molecules’ using DNA. Nature 382, 609–611 (1996).

    Article  CAS  Google Scholar 

  20. Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    Article  CAS  Google Scholar 

  21. Tkachenko, A. V. Morphological diversity of DNA-colloidal self-assembly. Phys. Rev. Lett. 89, 148303 (2002).

    Article  Google Scholar 

  22. Dai, W., Hsu, C. W., Sciortino, F. & Starr, F. W. Valency dependence of polymorphism and polyamorphism in DNA-functionalized nanoparticles. Langmuir 26, 3601–3608 (2010).

    Article  CAS  Google Scholar 

  23. Macfarlane, R. J. et al. Establishing the design rules for DNA-mediated colloidal crystallization. Angew. Chem. Int. Ed. 49, 4589–4592 (2010).

    Article  CAS  Google Scholar 

  24. Xiong, H. M., van der Lelie, D. & Gang, O. Phase behavior of nanoparticles assembled by DNA linkers. Phys. Rev. Lett. 102, 015504 (2009).

    Article  Google Scholar 

  25. Jones, M. R. et al. DNA–nanoparticle superlattices formed from anisotropic building blocks. Nature Mater. 9, 913–917 (2010).

    Article  CAS  Google Scholar 

  26. Macfarlane, R. J. et al. Nanoparticle superlattice engineering with DNA. Science 334, 204–208 (2011).

    Article  CAS  Google Scholar 

  27. Cigler, P., Lytton-Jean, A. K. R., Anderson, D. G., Finn, M. G. & Park, S. Y. DNA-controlled assembly of a NaTl lattice structure from gold nanoparticles and protein nanoparticles. Nature Mater. 9, 918–922 (2010).

    Article  CAS  Google Scholar 

  28. Sun, D. Z. & Gang, O. Binary heterogeneous superlattices assembled from quantum dots and gold nanoparticles with DNA. J. Am. Chem. Soc. 133, 5252–5254 (2011).

    Article  CAS  Google Scholar 

  29. Tikhomirov, G. et al. DNA-based programming of quantum dot valency, self-assembly and luminescence. Nature Nanotech. 6, 485–490 (2011).

    Article  CAS  Google Scholar 

  30. Sun, D. Z. et al. Heterogeneous nanoclusters assembled by PNA-templated double-stranded DNA. Nanoscale 4, 6722–6725 (2012).

    Article  CAS  Google Scholar 

  31. Ye, X. C., Chen, J. & Murray, C. B. Polymorphism in self-assembled AB(6) binary nanocrystal superlattices. J. Am. Chem. Soc. 133, 2613–2620 (2011).

    Article  CAS  Google Scholar 

  32. Kang, Y. J. et al. Design of Pt–Pd binary superlattices exploiting shape effects and synergistic effects for oxygen reduction reactions. J. Am. Chem. Soc. 135, 42–45 (2013).

    Article  CAS  Google Scholar 

  33. Zhang, C. et al. A general approach to DNA-programmable atom equivalents. Nature Mater. 12, 741–746 (2013).

    Article  CAS  Google Scholar 

  34. Xiong, H. M., van der Lelie, D. & Gang, O. DNA linker-mediated crystallization of nanocolloids. J. Am. Chem. Soc. 130, 2442–2443 (2008).

    Article  CAS  Google Scholar 

  35. Damasceno, P. F., Engel, M. & Glotzer, S. C. Predictive self-assembly of polyhedra into complex structures. Science 337, 453–457 (2012).

    Article  CAS  Google Scholar 

  36. Ye, X. C. et al. Competition of shape and interaction patchiness for self-assembling nanoplates. Nature Chem. 5, 466–473 (2013).

    Article  CAS  Google Scholar 

  37. Zhang, Y. G., Lu, F., van der Lelie, D. & Gang, O. Continuous phase transformation in nanocube assemblies. Phys. Rev. Lett. 107, 135701 (2011).

    Article  Google Scholar 

  38. Vial, S., Nykypanchuk, D., Yager, K. G., Tkachenko, A. V. & Gang, O. Linear mesostructures in DNA–nanorod self-assembly. ACS Nano 7, 5437–5445 (2013).

    Article  CAS  Google Scholar 

  39. Chi, C., Vargas-Lara, F., Tkachenko, A. V., Starr, F. W. & Gang, O. Internal structure of nanoparticle dimers linked by DNA. ACS Nano 6, 6793–6802 (2012).

    Article  CAS  Google Scholar 

  40. Sun, D. Z. & Gang, O. DNA-functionalized quantum dots: fabrication, structural, and physicochemical properties. Langmuir 29, 7038–7046 (2013).

    Article  CAS  Google Scholar 

  41. Knorowski, C., Burleigh, S. & Travesset, A. Dynamics and statics of DNA-programmable nanoparticle self-assembly and crystallization. Phys. Rev. Lett. 106, 215501 (2011).

    Article  CAS  Google Scholar 

  42. Krishnamoorthy, H. N. S., Jacob, Z., Narimanov, E., Kretzschmar, I. & Menon, V. M. Topological transitions in metamaterials. Science 336, 205–209 (2012).

    Article  CAS  Google Scholar 

  43. Wilson, O. M., Knecht, M. R., Garcia-Martinez, J. C. & Crooks, R. M. Effect of Pd nanoparticle size on the catalytic hydrogenation of allyl alcohol. J. Am. Chem. Soc. 128, 4510–4511 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research carried out at the Center for Functional Nanomaterials and National Synchrotron Light Source (Brookhaven National Laboratory) was supported by the US Department of Energy, Office of Basic Energy Sciences (contract no. DE-AC02-98CH10886).

Author information

Authors and Affiliations

Authors

Contributions

Y.G.Z., F.L., D.v.d.L. and O.G. initiated the concept. Y.G.Z. and O.G. designed the experiments. Y.G.Z. performed the experiments and analysed the data, F.L. contributed to particle functionalization and measurements. Y.G.Z. and O.G. wrote the paper. K.G.Y. contributed to the SAXS modelling and analysis. O.G. supervised the project. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Oleg Gang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 3416 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, Y., Lu, F., Yager, K. et al. A general strategy for the DNA-mediated self-assembly of functional nanoparticles into heterogeneous systems. Nature Nanotech 8, 865–872 (2013). https://doi.org/10.1038/nnano.2013.209

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.209

This article is cited by

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research