Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Optical trapping and manipulation of nanostructures

Abstract

Optical trapping and manipulation of micrometre-sized particles was first reported in 1970. Since then, it has been successfully implemented in two size ranges: the subnanometre scale, where light–matter mechanical coupling enables cooling of atoms, ions and molecules, and the micrometre scale, where the momentum transfer resulting from light scattering allows manipulation of microscopic objects such as cells. But it has been difficult to apply these techniques to the intermediate — nanoscale — range that includes structures such as quantum dots, nanowires, nanotubes, graphene and two-dimensional crystals, all of crucial importance for nanomaterials-based applications. Recently, however, several new approaches have been developed and demonstrated for trapping plasmonic nanoparticles, semiconductor nanowires and carbon nanostructures. Here we review the state-of-the-art in optical trapping at the nanoscale, with an emphasis on some of the most promising advances, such as controlled manipulation and assembly of individual and multiple nanostructures, force measurement with femtonewton resolution, and biosensors.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The three size ranges of optical trapping.
Figure 2: Basic experimental designs.
Figure 3: Optical manipulation and placement of nanowires.
Figure 4: Plasmonic tweezers.
Figure 5: Photonic force microscope.
Figure 6: Spectroscopy of nanostructures in optical traps.
Figure 7: Nanoparticle levitation and laser cooling.

References

  1. Poynting, J. H. On the transfer of energy in the electromagnetic field. Phil. Trans. R. Soc. Lond. 175, 343–361 (1884).

    Google Scholar 

  2. Lebedev, P. Untersuchungen über die druckkräfte des lichtes. Ann. Phys. 311, 433–458 (1901).

    Google Scholar 

  3. Nichols, E. F. & Hull, G. F. A preliminary communication on the pressure of heat and light radiation. Phys. Rev. 13, 307–320 (1901).

    Google Scholar 

  4. Ashkin, A. History of optical trapping and manipulation of small neutral particle, atoms, and molecules. IEEE J. Selected Topics Quant. Electr., 6, 841–856 (2000).

    CAS  Google Scholar 

  5. Ashkin, A. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159 (1970).

    CAS  Google Scholar 

  6. Ashkin, A. Atomic-beam deflection by resonance-radiation pressure. Phys. Rev. Lett. 25, 1321–1324 (1970).

    CAS  Google Scholar 

  7. Chu, S. The manipulation of neutral particles. Rev. Mod. Phys. 70, 685–706 (1998).

    CAS  Google Scholar 

  8. Cohen-Tannoudji, C. Manipulating atoms with photons. Rev. Mod. Phys. 70, 707–719 (1998).

    CAS  Google Scholar 

  9. Phillips, W. D. Laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 70, 721–740 (1998).

    CAS  Google Scholar 

  10. Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003).

    Article  CAS  Google Scholar 

  11. Foot, C. J. Atomic Physics (Oxford Univ. Press, 2005).

    Google Scholar 

  12. Ashkin, A., Dziedzic, J., Bjorkholm, J. & Chu, S. Observation of a single-beam gradient optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986).

    CAS  Google Scholar 

  13. Dholakia, K. & Čižmár, T. Shaping the future of manipulation. Nature Photon. 5, 335–342 (2011).

    CAS  Google Scholar 

  14. Padgett, M. & Bowman, R. Tweezers with a twist. Nature Photon. 5, 343–348 (2011).

    CAS  Google Scholar 

  15. Neuman, K. C. & Nagy, A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods 5, 491–505 (2008).

    CAS  Google Scholar 

  16. Gordon, J. P. Radiation forces and momenta in dielectric media. Phys. Rev. A 8, 14–21 (1973).

    CAS  Google Scholar 

  17. Purcell, E. M. & Pennypacker, C. R. Scattering and absorption of light by nonspherical dielectric grains. Astrophys. J. 186, 705–714 (1973).

    Google Scholar 

  18. Volpe, G., Helden, L., Brettschneider, T., Wehr, J. & Bechinger, C. Influence of noise on force measurements. Phys. Rev. Lett. 104, 170602 (2010).

    Google Scholar 

  19. Svoboda, K. & Block, S. M. Optical trapping of metallic Rayleigh particles. Opt. Lett. 19, 930–932 (1994).

    CAS  Google Scholar 

  20. Hansen, P. M., Bhatia, V. K. L., Harrit, N. & Oddershede, L. Expanding the optical trapping range of gold nanoparticles. Nano Lett. 5, 1937–1942 (2005).

    CAS  Google Scholar 

  21. Bosanac, L., Aabo, T., Bendix, P. M. & Oddershede, L. B. Efficient optical trapping and visualization of silver nanoparticles. Nano Lett. 8, 1486–1491 (2008).

    CAS  Google Scholar 

  22. Pelton, M. et al. Optical trapping and alignment of single gold nanorods by using plasmon resonances. Opt. Lett. 31, 2075–2077 (2006).

    CAS  Google Scholar 

  23. Toussaint, K. C. et al. Plasmon resonance-based optical trapping of single and multiple Au nanoparticles. Opt. Express 15, 12017–12029 (2007).

    CAS  Google Scholar 

  24. Selhuber-Unkel, C., Zins, I., Schubert, O., Sonnichsen, C. & Oddershede, L. B. Quantitative optical trapping of single gold nanorods. Nano Lett. 8, 2998–3003 (2008).

    CAS  Google Scholar 

  25. Dienerowitz, M., Mazilu, M., Reece, P., Krauss, T. & Dholakia, K. Optical vortex trap for resonant confinement of metal nanoparticles. Opt. Express 16, 4991–4999 (2008).

    Google Scholar 

  26. Jones, P. H. et al. Rotation detection in light-driven nanorotors. ACS Nano 3, 3077–3084 (2009).

    CAS  Google Scholar 

  27. Tong, L., Miljkovic, V. D. & Käll, M. Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces. Nano Lett. 10, 268–273 (2010).

    CAS  Google Scholar 

  28. Tong, L. et al. Plasmon hybridization reveals the interaction between individual colloidal gold nanoparticles confined in an optical potential well. Nano Lett. 11, 4505–4508 (2011).

    CAS  Google Scholar 

  29. Messina, E. et al. Plasmon-enhanced optical trapping of gold nanoaggregates with selected optical properties. ACS Nano 5, 905–913 (2011).

    CAS  Google Scholar 

  30. Ploschner, M., Cizmar, T., Mazilu, M., Di Falco, A. & Dholakia, K. Bidirectional optical sorting of gold nanoparticles. Nano Lett. 12, 1923–1927 (2012).

    CAS  Google Scholar 

  31. Jauffred, L., Richardson, A. C. & Oddershede, L. B. Three-dimensional optical control of individual quantum dots. Nano Lett. 8, 3376–3380 (2008).

    CAS  Google Scholar 

  32. Chen, Y. F. et al. Controlled photonic manipulation of proteins and other nanomaterials. Nano Lett. 12, 1633–1637 (2012).

    Google Scholar 

  33. Tan, S., Lopez, H. A., Cai, C. W. & Zhang, Y. Optical trapping of single-walled carbon nanotubes. Nano Lett. 4, 1415–1419 (2004).

    CAS  Google Scholar 

  34. Maragò, O. M. et al. Optical trapping of carbon nanotubes. Physica E 40, 2347–2351 (2008).

    Google Scholar 

  35. Maragò, O. M. et al. Femtonewton force sensing with optically trapped nanotubes. Nano Lett. 8, 3211–3216 (2008).

    Google Scholar 

  36. Rodgers, T. et al. Selective aggregation of single-walled carbon nanotubes using the large optical field gradient of a focused laser beam. Phys. Rev. Lett. 101, 127402 (2008).

    Google Scholar 

  37. Pauzauskie, P. J., Jamshidi, A., Valley, J. K., Satcher, J. H. & Wu, M. C. Parallel trapping of multiwalled carbon nanotubes with optoelectronic tweezers. Appl. Phys. Lett. 95, 113104 (2009).

    Google Scholar 

  38. Maragò, O. M. et al. Brownian motion of graphene. ACS Nano 4, 7515–7523 (2010).

    Google Scholar 

  39. Twombly, C. W., Evans, J. S. & Smalyukh, I. I. Optical manipulation of self-aligned graphene flakes in liquid crystals. Opt. Express 21, 1324–1334 (2013).

    CAS  Google Scholar 

  40. Geiselmann, M. et al. Three-dimensional optical manipulation of a single electron spin. Nature Nanotech. 8, 175–179 (2013).

    CAS  Google Scholar 

  41. Neves, A. A. R. et al. Rotational dynamics of optically trapped nanofibers. Opt. Express 18, 822–830 (2010).

    CAS  Google Scholar 

  42. Agarwal, R. et al. Manipulation and assembly of nanowires with holographic optical traps. Opt. Express 13, 8906–8912 (2005).

    Google Scholar 

  43. Pauzauskie, P. J. et al. Optical trapping and integration of semiconductor nanowire assemblies in water. Nature Mater. 5, 97–101 (2006).

    CAS  Google Scholar 

  44. Nakayama, Y. et al. Tunable nanowire nonlinear optical probe. Nature 447, 1098–1101 (2007).

    CAS  Google Scholar 

  45. Reece, P. J. et al. Combined optical trapping and microphotoluminescence of single InP nanowires. Appl. Phys. Lett. 95, 101109 (2009).

    Google Scholar 

  46. Irrera, A. et al. Size-scaling in optical trapping of silicon nanowires. Nano Lett. 11, 4879–4884 (2011).

    CAS  Google Scholar 

  47. Reece, P. J. et al. Characterisation of semiconductor nanowires based on optical tweezers. Nano Lett. 11, 2375–2381 (2011).

    CAS  Google Scholar 

  48. Dutto, F. et al. Nonlinear optical response in single alkaline niobate nanowires. Nano Lett. 11, 2517–2521 (2011).

    CAS  Google Scholar 

  49. Wang, F. et al. Resolving stable axial trapping points of nanowires in an optical tweezers using photoluminescence mapping. Nano Lett. 13, 1185–1191 (2013).

    CAS  Google Scholar 

  50. Quidant, R., Petrov, D. & Badenes, G. Radiation forces on a Rayleigh dielectric sphere in a patterned optical near field. Opt. Lett. 30, 1009–1011 (2005).

    Google Scholar 

  51. Volpe, G., Quidant, R., Badenes, G. & Petrov, D. Surface plasmon radiation forces. Phys. Rev. Lett. 96, 238101 (2006).

    Google Scholar 

  52. Righini, M., Zelenina, A. S., Girard, C. & Quidant, R. Parallel and selective trapping in a patterned plasmonic landscape. Nature Phys. 3, 477–480 (2007).

    CAS  Google Scholar 

  53. Righini, M., Volpe, G., Girard, C., Petrov, D. & Quidant, R. Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range. Phys. Rev. Lett. 100, 183604 (2008).

    Google Scholar 

  54. Grigorenko, A. N., Roberts, N. W., Dickinson, M. R. & Zhang, Y. Nanometric optical tweezers based on nanostructured substrates. Nature Photon. 2, 365–370 (2008).

    CAS  Google Scholar 

  55. Righini, M. et al. Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas. Nano Lett. 9, 3387–3391 (2009).

    CAS  Google Scholar 

  56. Pang, Y. & Gordon, R. Optical trapping of a single protein. Nano Lett. 12, 402–406 (2011).

    Google Scholar 

  57. Wang, K., Schonbrun, E., Steinvurzel, P. & Crozier, K. B. Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink. Nature Commun. 2, 469 (2011).

    Google Scholar 

  58. Juan, M. L., Gordon, R., Pang, Y., Eftekhari, F. & Quidant, R. Self-induced back-action optical trapping of dielectric nanoparticles. Nature Phys. 5, 915–919 (2009).

    CAS  Google Scholar 

  59. Ikin, L., Carberry, D. M., Gibson, G. M., Padgett, M. J. & Miles, M. J. Assembly and force measurement with SPM-like probes in holographic optical tweezers. New J. Phys. 11, 023012 (2009).

    Google Scholar 

  60. Pollard, M. R. et al. Optically trapped probes with nanometerscale tips for femto-newton force measurement. New J. Phys 12, 113056 (2010).

    Google Scholar 

  61. Phillips, D. B. et al. Force sensing with a shaped dielectric microtool. Europhys. Lett. 99, 58004 (2012).

    Google Scholar 

  62. Phillips, D. B. et al. Surface imaging using holographic optical tweezers. Nanotechnology 22, 285503 (2011).

    CAS  Google Scholar 

  63. Olof, S. N. et al. Measuring nanoscale forces with living probes. Nano Lett. 12, 6018–6023 (2012).

    CAS  Google Scholar 

  64. Phillips, D. B. et al. An optically actuated surface scanning probe. Opt. Express 20, 29679 (2012).

    CAS  Google Scholar 

  65. Petrov, D. V. Raman spectroscopy of optically trapped particles. J. Opt. A: Pure Appl. Opt. 9, S139–S156 (2007).

    CAS  Google Scholar 

  66. Ajito, K. & Torimitsu, K. Single nanoparticle trapping using a Raman tweezers microscope. Appl. Spectrosc. 56, 541–544 (2002).

    CAS  Google Scholar 

  67. Bjerneld, E. J. et al. Laser-induced growth and deposition of noble-metal nanoparticles for surface-enhanced Raman scattering. Nano Lett. 3, 593–596 (2003).

    CAS  Google Scholar 

  68. Svedberg, F. et al. Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation. Nano Lett. 6, 2639–2641 (2006).

    CAS  Google Scholar 

  69. Balint, S. et al. Simple route for preparing optically trappable probes for surface-enhanced Raman scattering. J. Phys. Chem. C 113, 17724–17729 (2009).

    CAS  Google Scholar 

  70. Rao, S. et al. Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering. Appl. Phys. Lett. 96, 213701 (2010).

    Google Scholar 

  71. Messina, E. et al. Manipulation and Raman spectroscopy with optically trapped metal nanoparticles obtained by pulsed laser ablation in liquids. J. Phys. Chem. C 115, 5115–5122 (2011).

    CAS  Google Scholar 

  72. Wang, F. et al. Nonlinear optical processes in optically trapped InP nanowires. Nano Lett. 11, 4149–4153 (2011).

    CAS  Google Scholar 

  73. Romero-Isart, O., Juan, M. L., Quidant, R. & Cirac, J. I. Toward quantum superposition of living organisms. New J. Phys. 12, 033015 (2010).

    Google Scholar 

  74. Chang, D. E. et al. Cavity opto-mechanics using an optically levitated nanosphere. Proc. Natl Acad. Sci. USA 107, 1005–1010 (2010).

    CAS  Google Scholar 

  75. Barker, P. F. & Shneider, M. N. Cavity cooling of an optically trapped nanoparticle. Phys. Rev. A 81, 023826 (2010).

    Google Scholar 

  76. Gieseler, J., Deutsch, B., Quidant, R. & Novotny, L. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. Phys. Rev. Lett. 109, 103603 (2012).

    Google Scholar 

  77. Draine, B. T. The discrete-dipole approximation and its application to interstellar graphite grains. Astrophys. J. 333, 848–872 (1988).

    CAS  Google Scholar 

  78. Albaladejo, S., Marqués, M. I., Laroche, M. & Sáenz, J. J. Scattering forces from the curl of the spin angular momentum of a light field. Phys. Rev. Lett. 102, 113602 (2009).

    Google Scholar 

  79. Borghese, F., Denti, P. & Saija, R. Scattering from Model Nonspherical Particles (Springer, 2007).

    Google Scholar 

  80. Pfeifer, R. N. C., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Momentum of an electromagnetic wave in dielectric media. Rev. Mod. Phys. 79, 1197–1216 (2007).

    Google Scholar 

  81. Mishchenko, M. I. Radiation force caused by scattering, absorption, and emission of light by nonspherical particles. J. Quant. Spectrosc. Radiat. Transfer 70, 811–816 (2001).

    CAS  Google Scholar 

  82. Nieminen, T. A., Rubinsztein-Dunlop, H. & Heckenberg, N. R. Calculation and optical measurement of laser trapping forces on non-spherical particles. J. Quant. Spectrosc. Radiat. Transfer 70, 627–637 (2001).

    CAS  Google Scholar 

  83. Saija, R., Iatí, M. A., Giusto, A., Denti, P. & Borghese, F. Transverse components of the radiation force on non-spherical particles in the T-matrix formalism. J. Quant. Spectrosc. Radiat. Transfer 94, 163–179 (2005).

    CAS  Google Scholar 

  84. Borghese, F., Denti, P., Saija, R. & Iatì, M. A. Optical trapping of non-spherical particles in the T-matrix formalism. Opt. Express 15, 11984–11998 (2007).

    Google Scholar 

  85. Borghese, F., Denti, P., Saija, R. & Iatì, M. A. Radiation torque on non-spherical particles in the transition matrix formalism. Opt. Express 14, 9508–9521 (2006).

    Google Scholar 

  86. Nieminen, T. A. et al. Optical tweezers computational toolbox. J. Opt. A: Pure Appl. Opt. 9, S196–S203 (2007).

    Google Scholar 

  87. Nieminen, T. A., Loke, V. L. Y., Stilgoe, A. B., Heckenberg, N. R. & Rubinsztein-Dunlop, H. T-matrix method for modelling optical tweezers. J. Mod. Opt. 58, 528–544 (2011).

    Google Scholar 

  88. Saija, R., Denti, P., Borghese, F., Maragó, O. M. & Iatì, M. A. Optical trapping calculations for metal nanoparticles: Comparison with experimental data for Au and Ag spheres. Opt. Express 17, 10231–10241 (2009).

    CAS  Google Scholar 

  89. Borghese, F., Denti, P., Saija, R., Iatì, M. A. & Maragó, O. M. Radiation torque and force on optically trapped linear nanostructures. Phys. Rev. Lett. 100, 163903 (2008).

    CAS  Google Scholar 

  90. Draine, B. T. & Flatau, P. J. Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A 11, 1491–1499 (1994).

    Google Scholar 

  91. Simpson, S. H. & Hanna, S. Application of the discrete dipole approximation to optical trapping calculations of inhomogeneous and anisotropic particles. Opt. Express 19, 16526–16541 (2011).

    Google Scholar 

  92. Loke, V. L. Y., Nieminen, T. A., Heckenberg, N. R., Rubinsztein-Dunlop, H. T-matrix calculation via discrete dipole approximation, point matching and exploiting symmetry. J. Quant. Spectrosc. Radiat. Transfer 110, 1460–1471 (2009).

    CAS  Google Scholar 

  93. Bareil, P. B. & Sheng, Y. Angular and position stability of a nanorod trapped in an optical tweezers. Opt. Express 18, 26388–26398 (2010).

    CAS  Google Scholar 

  94. Wright, W. H., Sonek, G. J. & Berns, M. W. Radiation trapping forces on microspheres with optical tweezers. Appl.Phys. Lett. 63, 715–717 (1993).

    CAS  Google Scholar 

  95. Meier, S. A. Plasmonics: Fundamentals and Applications (Springer, 2007).

    Google Scholar 

  96. Seol, Y., Carpenter, A. E. & Perkins, T. T. Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating. Opt. Lett. 31, 2429–2431 (2006).

    CAS  Google Scholar 

  97. Kyrsting, A., Bendix, P. M., Stamou, D. G. & Oddershede, L. B. Heat profiling of three-dimensionally optically trapped gold nanoparticles using vesicle cargo release. Nano Lett. 11, 888–892 (2011).

    CAS  Google Scholar 

  98. Yan, Z. et al. Three-dimensional optical trapping and manipulation of single silver nanowires. Nano Lett. 12, 5155–5161 (2012).

    CAS  Google Scholar 

  99. Zhan, Q. Trapping metallic Rayleigh particles with radial polarization. Opt. Express 12, 3377–3382 (2004).

    CAS  Google Scholar 

  100. Volpe, G., Singh, G. P. & Petrov, D. Optical tweezers with cylindrical vector beams produced by optical fibers. Proc. SPIE 5514, 283–292 (2004).

    Google Scholar 

  101. Skelton, S. E. et al. Trapping volume control in optical tweezers using cylindrical vector beams. Opt. Lett. 38, 28–30 (2013).

    CAS  Google Scholar 

  102. Donato, M. G. et al. Optical trapping of nanotubes with cylindrical vector beams. Opt. Lett. 37, 3381–3383 (2012).

    CAS  Google Scholar 

  103. Iglesias, I. & Sáenz, J. J. Light spin forces in optical traps: comment on “Trapping metallic Rayleigh particles with radial polarization”. Opt. Express 20, 2832–2834 (2012).

    CAS  Google Scholar 

  104. Baffou, G. & Quidant, R. Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photon. Rev. 7, 171–187 (2013).

    CAS  Google Scholar 

  105. Ma, H., Bendix, P. M. & Oddershede, L. B. Large-scale orientation dependent heating from a single irradiated gold nanorod. Nano Lett. 12, 3954–3960 (2012).

    CAS  Google Scholar 

  106. Burns, M. M., Fournier, J-M. & Golovchenko, J. A. Optical binding. Phys. Rev. Lett. 63, 1233–1236 (1989).

    CAS  Google Scholar 

  107. Burns, M. M., Fournier, J-M. & Golovchenko, J. A. Optical matter: Crystallization and binding in intense optical fields. Science 249, 749–754 (1990).

    CAS  Google Scholar 

  108. Dholakia, K. & Zemánek, P. Colloquium: Gripped by light: Optical binding. Rev. Mod. Phys. 82, 1767–1791 (2010).

    Google Scholar 

  109. Demergis, V. & Florin, E-L. Ultrastrong optical binding of metallic nanoparticles. Nano Lett. 12, 5756–5760 (2012).

    CAS  Google Scholar 

  110. Yan, Z., Shah, R. A., Chado, G., Gray, S. K., Pelton, M. & Scherer, N. F. Guiding spatial arrangements of silver nanoparticles by optical binding interactions in shaped light fields. ACS Nano 7, 1790–1802 (2013).

    CAS  Google Scholar 

  111. Slama-Eliau, B. N. & Raithel, G. Three-dimensional arrays of submicron particles generated by a four-beam optical lattice. Phys. Rev. E 83, 051406 (2011).

    CAS  Google Scholar 

  112. Albaladejo, S., Sáenz, J. J. & Marqués, M. I. Plasmonic nanoparticle chain in a light field: A resonant optical sail. Nano Lett. 11, 4597–4600 (2011).

    CAS  Google Scholar 

  113. Dapasse, F. & Vigoureux, J. M. Optical binding force between two Rayleigh particles. J. Phys. D: Appl. Phys. 27, 914–919 (1994).

    Google Scholar 

  114. Bonaccorso, F. et al. Density gradient ultracentrifugation of nanotubes: Interplay of bundling and surfactants encapsulation. J. Phys. Chem. C 114, 17267–17285 (2010).

    CAS  Google Scholar 

  115. Neuman, K. C. & Block, S. M. Optical trapping. Rev. Sci. Instrum. 75, 2787–2809 (2004).

    CAS  Google Scholar 

  116. Lee, W. M., Reece, P. J., Marchington, R. F., Metzger, N. K. & Dholakia, K. Construction and calibration of an optical trap on a fluorescence optical microscope. Nature Protoc. 2, 3226–3238 (2007).

    CAS  Google Scholar 

  117. Donato, M. G. et al. Optical trapping of porous silicon nanoparticles. Nanotechnology 22, 505704 (2011).

    Google Scholar 

  118. Fällman, E. & Axner, O. Design for fully steerable dual-trap optical tweezers. Appl. Opt. 36, 2107–2113 (1997).

    Google Scholar 

  119. Lee, S-W., Jo, G., Lee, T. & Lee, Y-G. Controlled assembly of In2O3 nanowires on electronic circuits using scanning optical tweezers. Opt. Express 17, 17491–17501 (2009).

    CAS  Google Scholar 

  120. Mack, A. H., Trias, M. K. & Mochrie, S. G. J. Precision optical trapping via a programmable direct-digital-synthesis-based controller for acousto-optic deflectors. Rev. Sci. Instrumen. 80, 016101 (2009).

    CAS  Google Scholar 

  121. Dufresne, E. R. & Grier, D. G. Optical tweezer arrays and optical substrates created with diffractive optics. Rev. Sci. Instrumen. 69, 1974–1977 (1998).

    CAS  Google Scholar 

  122. Reicherter, M., Haist, T., Wagemann, E. U. & Tiziani, H. J. Optical particle trapping with computer-generated holograms written on a liquid-crystal display. Opt. Lett. 24, 608–610 (1999).

    CAS  Google Scholar 

  123. Mogensen, P. C. & Glückstad, J. Dynamic array generation and pattern formation for optical tweezers. Opt. Commun. 175, 75–81 (2000).

    CAS  Google Scholar 

  124. Liesener, J., Reicherter, M., Haist, T. & Tiziani, H. Multi-functional optical tweezers using computer-generated holograms. Opt. Commun. 185, 77–82 (2000).

    CAS  Google Scholar 

  125. Dufresne, E. R., Spalding, G. C., Dearing, M. T., Sheets, S. A. & Grier, D. G. Computer-generated holographic optical tweezer arrays. Rev. Sci. Instrumen. 72, 1810–1816 (2001).

    CAS  Google Scholar 

  126. Castelino, K., Satyanarayana, S. & Sitti, M. Manufacturing of two and three-dimensional micro/nanostructures by integrating optical tweezers with chemical assembly. Robotica 23, 435–439 (2005).

    Google Scholar 

  127. Novotny, L., Bian, R. X. & Xie, X. S. Theory of nanometric optical tweezers. Phys. Rev. Lett. 79, 645–648 (1997).

    CAS  Google Scholar 

  128. Martin, O. J. F. & Girard, C. Controlling and tuning strong optical field gradients at a local probe microscope tip apex. Appl. Phys. Lett. 70, 705–707 (1997).

    Google Scholar 

  129. Okamoto, K. & Kawata, S. Radiation force exerted on subwavelength particles near a nanoaperture. Phys. Rev. Lett. 83, 4534–4537 (1999).

    CAS  Google Scholar 

  130. Garcés-Chávez, V. et al. Extended organization of colloidal microparticles by surface plasmon polariton excitation. Phys. Rev. B 73, 085417 (2006).

    Google Scholar 

  131. Huang, L., Maerkl, S. J. & Martin, O. J. Integration of plasmonic trapping in a microfluidic environment. Opt. Express 17, 6018–6024 (2009).

    CAS  Google Scholar 

  132. Volpe, G., Volpe, G. & Quidant, R. Fractal plasmonics: subdiffraction focusing and broadband spectral response by a Sierpinski nanocarpet. Opt. Express 19, 3612–3618 (2011).

    CAS  Google Scholar 

  133. Ghislain, L. P. & Webb, W. W. Scanning-force microscope based on an optical trap. Opt. Lett. 18, 1678–1680 (1993).

    CAS  Google Scholar 

  134. Florin, E-L., Pralle, A., Horber, J. K. H. & Stelzer, E. H. K. Photonic force microscope based on optical tweezers and two-photon excitation for biological applications. J. Struct. Biol. 119, 202–211 (1997).

    CAS  Google Scholar 

  135. Rohrbach, A., Tischer, C., Neumayer, D., Florin, E-L. & Stelzer, E. H. K. Trapping and tracking a local probe with a photonic force microscope. Rev. Sci. Instrumen. 75, 2197–2210 (2004).

    CAS  Google Scholar 

  136. Pralle, A., Prummer, M., Florin, E-L., Stelzer, E. H. K. & Horber, J. K. H. Three-dimensional high resolution particle tracking for optical tweezers by forward light scattering. Microsc. Res. Tech. 44, 378–386 (1999).

    CAS  Google Scholar 

  137. Tischer, C. et al. Three-dimensional thermal noise imaging. Appl. Phys. Lett. 79, 3878–3880 (2001).

    CAS  Google Scholar 

  138. Meiners, J-C. & Quake, S. R. Direct measurement of hydrodynamic cross correlations between two particles in an external potential. Phys. Rev. Lett. 82, 2211–2214 (1999).

    CAS  Google Scholar 

  139. Berg-Sorensen, K. & Flyvbjerg, H. Power spectrum analysis for optical tweezers. Rev. Sci. Instrumen. 75, 594–612 (2004).

    CAS  Google Scholar 

  140. Brettschneider, T., Volpe, G., Helden, L., Wehr, J. & Bechinger, C. Force measurement in the presence of Brownian noise: Equilibrium distribution method versus drift method. Phys. Rev. E 83, 041113 (2011).

    Google Scholar 

  141. Kress, H., Stelzer, E. H. K. & Rohrbach, A. Tilt angle dependent three-dimensional-position detection of a trapped cylindrical particle in a focused laser beam. Appl. Phys. Lett. 84, 4271–4273 (2004).

    CAS  Google Scholar 

  142. Ito, S., Yoshikawa, H. & Masuhara, H. Optical patterning and photochemical fixation of polymer nanoparticles on glass substrates. Appl. Phys. Lett. 78, 2566–2568 (2001).

    CAS  Google Scholar 

  143. Guffey, M. J. & Scherer, N. F. All-optical patterning of Au nanoparticles on surfaces using optical traps. Nano Lett. 10, 4302–4308 (2010).

    CAS  Google Scholar 

  144. Nedev, S., Urban, A. S., Lutich, A. A. & Feldmann, J. Optical force stamping lithography. Nano Lett. 11, 5066–5070 (2011).

    CAS  Google Scholar 

  145. Woerdemann, M. et al. Dynamic and reversible organization of Zeolite L crystals induced by holographic optical tweezers. Adv. Mater. 22, 4176–4179 (2010).

    CAS  Google Scholar 

  146. McLeod, E. & Arnold, C. B. Subwavelength direct-write nanopatterning using optically trapped microspheres. Nature Nanotech. 3, 413–417 (2008).

    CAS  Google Scholar 

  147. Tsai, Y-C., Leitz, K-H., Fardel, R., Otto, A., Schmidt, M. & Arnold, C. B. Parallel optical trap assisted nanopatterning on rough surfaces. Nanotechnology 23, 165304 (2012).

    CAS  Google Scholar 

  148. Prikulis, J. et al. Optical spectroscopy of single trapped metal nanoparticles in solution. Nano Lett. 4, 115–118 (2004).

    CAS  Google Scholar 

  149. Ohlinger, A., Nedev, S., Lutich, A. A. & Feldman, J. Optothermal escape of plasmonically coupled silver nanoparticles from a three dimensional optical trap. Nano Lett. 11, 1770–1774 (2011).

    CAS  Google Scholar 

  150. Xie, C. G. et al. Near-infrared raman spectroscopy of single optically trapped biological cells. Opt. Lett. 27, 249–251 (2002).

    Google Scholar 

  151. Huang, Y., Duan, X. & Lieber, C. M. Nanowires for integrated multicolor nanophotonics. Small 1, 142–147 (2005).

    CAS  Google Scholar 

  152. O'Connell, M. J. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002).

    CAS  Google Scholar 

  153. Tan, P. et al. Photoluminescence spectroscopy of carbon nanotube bundles: Evidence for exciton energy transfer. Phys. Rev. Lett. 99, 137402 (2007).

    CAS  Google Scholar 

  154. Hertel, T. et al. Spectroscopy of single-and double-wall carbon nanotubes in different environments. Nano Lett. 5, 511–514 (2005).

    CAS  Google Scholar 

  155. Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2007).

    Google Scholar 

  156. Ferrari, A. C. & Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature Nanotech. 8, 235–246 (2013).

    CAS  Google Scholar 

  157. Aizpurua, J. et al. Optical properties of coupled metallic nanorods for field-enhanced spectroscopy. Phys. Rev. B 71, 235420 (2005).

    Google Scholar 

  158. Prodan, E. et al. A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003).

    CAS  Google Scholar 

  159. Kneipp, K., Moskovits, M. & Kneipp, H. Surface-Enhanced Raman Scattering (Springer, 2006).

    Google Scholar 

  160. Willets, K. A. & Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007).

    CAS  Google Scholar 

  161. McDougall, C., Stevenson, D. J., Brown, C. T. A., Gunn-Moore, F. & Dholakia, K. Targeted optical injection of gold nanoparticles into single mammalian cells. J. Biophotonics 2, 736–743 (2009).

    CAS  Google Scholar 

  162. Stevenson, D. et al. Femtosecond optical transfection of cells: viability and efficiency. Opt. Express 14, 7125–7133 (2006).

    CAS  Google Scholar 

  163. Cleland, A. Optomechanics: Photons refrigerating phonons. Nature Phys. 5, 458–460 (2009).

    CAS  Google Scholar 

  164. Kane, B. E. Levitated spinning graphene flakes in an electric quadrupole ion trap. Phys. Rev. B 82, 115441 (2010).

    Google Scholar 

  165. Hernandez, Y. et al. High-yield production of graphene by liquid phase exfoliation of graphite. Nature Nanotech. 3, 563–568 (2008).

    CAS  Google Scholar 

  166. Li, T., Kheifets, S. & Raizen, M. G. Millikelvin cooling of an optically trapped microsphere in vacuum. Nature Phys. 7, 527–530 (2011).

    CAS  Google Scholar 

  167. Ridolfo, A. et al. Fano-doppler laser cooling of hybrid nanostructures. ACS Nano 5, 7354–7361 (2011).

    CAS  Google Scholar 

  168. Juan, M. L., Righini, M. & Quidant, R. Plasmon nano-optical tweezers. Nature Photon. 5, 349–356 (2011).

    CAS  Google Scholar 

  169. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nature Nanotech. 6, 147–150 (2011).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Bonaccorso, B. Fazio, C. J. Foot, M. G. Donato, M. A. Iatì, A. Irrera, R. Saija, S. Savasta and G. Volpe for discussions. We acknowledge funding from FP7-HEALTH-F5-2009-241818 NANOANTENNA, MPNS COST Action 1205 “Advances in Optofluidics: Integration of Optical Control and Photonics with Microfluidics”, the Leverhulme Trust, the Scientific and Technological Research Council of Turkey (TUBITAK) under Grants 111T758 and 112T235, Marie Curie Career Integration Grant (MC-CIG) under Grant PCIG11 GA-2012-321726, COST Action IC1208, the Royal Society, the European Research Council Grant NANOPOTS, EU Grants RODIN, MEM4WIN, and Graphene Flagship, EPSRC grants EP/K01711X/1, EP/K017144/1, EP/G042357/1 and Nokia Research Centre, Cambridge.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Onofrio M. Maragò or Andrea C. Ferrari.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Maragò, O., Jones, P., Gucciardi, P. et al. Optical trapping and manipulation of nanostructures. Nature Nanotech 8, 807–819 (2013). https://doi.org/10.1038/nnano.2013.208

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.208

This article is cited by

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research