Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hot-electron nanoscopy using adiabatic compression of surface plasmons

Abstract

Surface plasmon polaritons are a central concept in nanoplasmonics and have been exploited to develop ultrasensitive chemical detection platforms, as well as imaging and spectroscopic techniques at the nanoscale. Surface plasmons can decay to form highly energetic (or hot) electrons in a process that is usually thought to be parasitic for applications, because it limits the lifetime and propagation length of surface plasmons and therefore has an adverse influence on the functionality of nanoplasmonic devices. Recently, however, it has been shown that hot electrons produced by surface plasmon decay can be harnessed to produce useful work in photodetection, catalysis and solar energy conversion. Nevertheless, the surface-plasmon-to-hot-electron conversion efficiency has been below 1% in all cases. Here we show that adiabatic focusing of surface plasmons on a Schottky diode-terminated tapered tip of nanoscale dimensions allows for a plasmon-to-hot-electron conversion efficiency of 30%. We further demonstrate that, with such high efficiency, hot electrons can be used for a new nanoscopy technique based on an atomic force microscopy set-up. We show that this hot-electron nanoscopy preserves the chemical sensitivity of the scanned surface and has a spatial resolution below 50 nm, with margins for improvement.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Schematic of experimental set-up.
Figure 2: Plasmonic structure and scheme of SPP generation.
Figure 3: Photoelectric AFM current through the n-type GaAs–Au tip junction.
Figure 4: IV characteristics of the nanosized Schottky junction.
Figure 5: Three-dimensional hot-electron maps of specific custom-realized locally patterned samples.
Figure 6: SPP-to-hot-electron conversion efficiency and responsivity.

References

  1. Barnes, W. L. Surface plasmon-polariton length scales: a route to sub-wavelength optics. J. Opt. A 8, S87–S93 (2006).

    Article  Google Scholar 

  2. Proietti Zaccaria, R. et al. Fully analytical description of adiabatic compression in dissipative polaritonic structures. Phys. Rev. B 86, 035410 (2012).

    Article  Google Scholar 

  3. Shen, H., Guillot, N., Rouxel, J., de la Chapelle, M. L. & Toury, T. Optimized plasmonic nanostructures for improved sensing activities. Opt. Express 20, 21278–21290 (2012).

    Article  CAS  Google Scholar 

  4. Guillot, N. et al. Surface enhanced Raman scattering optimization of gold nanocylinder arrays: influence of the localized surface plasmon resonance and excitation wavelength. Appl. Phys. Lett. 97, 023113 (2010).

    Article  Google Scholar 

  5. Gucciardi, P. G. et al. Light depolarization induced by metallic tips in apertureless near-field optical microscopy and tip-enhanced Raman spectroscopy. Nanotechnology 19, 215702 (2008).

    Article  CAS  Google Scholar 

  6. D'Andrea, C. et al. Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy. ACS Nano 7, 3522–3531 (2013).

    Article  CAS  Google Scholar 

  7. Rauhut, N. et al. Antenna-enhanced photocurrent microscopy on single-walled carbon nanotubes at 30 nm resolution. ACS Nano 6, 6416–6421 (2012).

    Article  CAS  Google Scholar 

  8. Goykhman, I., Desiatov, B., Khurgin, J., Shappir, J. & Levy, U. Locally oxidized silicon surface-plasmon Schottky detector for telecom regime. Nano Lett. 11, 2219–2224 (2011).

    Article  CAS  Google Scholar 

  9. Knight, M. W., Sobhani, H., Nordlander, P. & Halas, N. J. Photodetection with active optical antennas. Science 332, 702–704 (2011).

    Article  CAS  Google Scholar 

  10. Goykhman, I., Desiatov, B., Khurgin, J., Shappir, J. & Levy, U. Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band. Opt. Express 20, 28594–28602 (2012).

    Article  Google Scholar 

  11. Mubeen, S. et al. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nature Nanotech. 8, 247–251 (2013).

    Article  CAS  Google Scholar 

  12. De Angelis, F. et al. Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures. Nature Photon. 5, 683–688 (2011).

    Article  Google Scholar 

  13. De Angelis, F. et al. Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. Nature Nanotech. 5, 67–72 (2010).

    Article  CAS  Google Scholar 

  14. Babadjanyan, A. J., Margaryan, N. L. & Nerkararyan, K. V. Superfocusing of surface polaritons in the conical structure. J. Appl. Phys. 87, 3785–3788 (2000).

    Article  CAS  Google Scholar 

  15. Stockman, M. I. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 93, 137404 (2004).

    Article  Google Scholar 

  16. Stockman, M. I. Erratum: nanofocusing of optical energy in tapered plasmonic waveguides [Phys. Rev. Lett. 93, 137404 (2004)]. Phys. Rev. Lett. 106, 019901 (2011).

    Article  Google Scholar 

  17. Bao, W. et al. Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging. Science 338, 1317–1321 (2012).

    Article  CAS  Google Scholar 

  18. Gramotnev, D. K., Vogel, M. W. & Stockman, M. I. Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods. J. Appl. Phys. 104, 034311 (2008).

    Article  Google Scholar 

  19. Aeschlimann, M. in Encyclopedia of Nanoscience and Nanotechnology (ed. Singh Nalwa, H.) Vol. 3, 29–40 (American Scientific, 2004).

    Google Scholar 

  20. Hasegawa, K., Nöckel, J. U. & Deutsch, M. Curvature-induced radiation of surface plasmon polaritons propagating around bends. Phys. Rev. A 75, 063816 (2007).

    Article  Google Scholar 

  21. Wiener, A., Fernandez-Dominguez, A. I., Horsfield, A. P., Pendry, J. B. & Maier, S. A. Nonlocal effects in the nanofocusing performance of plasmonic tips. Nano Lett. 12, 3308–3314 (2012).

    Article  CAS  Google Scholar 

  22. Melikyan, A. & Minassian, H. On surface plasmon damping in metallic nanoparticles. Appl. Phys. B 78, 453–455 (2004).

    Article  CAS  Google Scholar 

  23. Sönnichsen, C. et al. Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett. 88, 077402 (2002).

    Article  Google Scholar 

  24. Issa, N. A. & Guckenberger, R. Fluorescence near metal tips: the roles of energy transfer and surface plasmon polaritons. Opt. Express 15, 12131–12144 (2007).

    Article  CAS  Google Scholar 

  25. Kats, M. A., Yu, N., Genevet, P., Gaburro, Z. & Capasso, F. Effect of radiation damping on the spectral response of plasmonic components. Opt. Express 19, 21748–21753 (2011).

    Article  CAS  Google Scholar 

  26. Bharadwaj, P., Bouhelier, A. & Novotny, L. Electrical excitation of surface plasmons. Phys. Rev. Lett. 106, 226802 (2011).

    Article  Google Scholar 

  27. Cabrini, S. et al. Focused ion beam lithography for two dimensional array structures for photonic applications. Microelectron. Eng. 78–79, 11–15 (2005).

    Article  Google Scholar 

  28. De Angelis, F. et al. A hybrid plasmonic−photonic nanodevice for label-free detection of a few molecules. Nano Lett. 8, 2321–2327 (2008).

    Article  CAS  Google Scholar 

  29. Donolato, C. Approximate analytical solution to the space charge problem in nanosized Schottky diodes. J. Appl. Phys. 95, 2184–2186 (2004).

    Article  CAS  Google Scholar 

  30. Smit, G. D. J., Rogge, S. & Klapwijk, T. M. Scaling of nano-Schottky-diodes. Appl. Phys. Lett. 81, 3852–3854 (2002).

    Article  CAS  Google Scholar 

  31. Sondheimer, E. H. The mean free path of electrons in metals. Adv. Phys. 50, 499–537 (2001).

    Article  Google Scholar 

  32. Dalal, V. L. Simple model for internal photoemission J. Appl. Phys. 42, 2274–2279 (1971).

    Article  CAS  Google Scholar 

  33. Simon, M. & Sze, K. K. N. Physics of Semiconductor Devices 3rd edn (Wiley-Interscience, 2006).

    Google Scholar 

  34. Card, H. C. & Rhoderick, E. H. Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. J. Phys. D 4, 1589–1601 (1971).

    Article  CAS  Google Scholar 

  35. Hudait, M. K. & Krupanidhi, S. B. Doping dependence of the barrier height and ideality factor of Au/n-GaAs Schottky diodes at low temperatures. Physica B 307, 125–137 (2001).

    Article  CAS  Google Scholar 

  36. Hardikar, S., Hudait, M. K., Modak, P., Krupanidhi, S. B. & Padha, N. Anomalous current transport in Au/low-doped n-GaAs Schottky barrier diodes at low temperatures. Appl. Phys. A 68, 49–55 (1999).

    Article  CAS  Google Scholar 

  37. Lorenzoni, M., Giugni, A. & Torre, B. Oxidative and carbonaceous patterning of Si surface in an organic media by scanning probe lithography. Nano. Res. Lett. 8, 75 (2013).

    Article  Google Scholar 

  38. Torrey, J. D. et al. Scanning probe direct-write of germanium nanostructures. Adv. Mater. 22, 4639–4642 (2010).

    Article  CAS  Google Scholar 

  39. Canale, C., Torre, B., Ricci, D. & Braga, P. C. Recognizing and avoiding artifacts in atomic force microscopy imaging. Methods Mol. Biol. 736, 31–43 (2011).

    Article  CAS  Google Scholar 

  40. Fowler, R. H. The analysis of photoelectric sensitivity curves for clean metals at various temperatures. Phys. Rev. 38, 45–56 (1931).

    Article  CAS  Google Scholar 

  41. Palik, E. D. Handbook of Optical Constants of Solids. Part II (Academic, 1985).

    Google Scholar 

Download references

Acknowledgements

The authors thank M. Lorenzoni for providing the patterned sample for hot-electron nanoimaging. The authors also thank S. Lupi for infrared absorption measurements, B. S. Ooi for helping with 980 nm measurements, and A. Fratalocchi for several useful discussions. E.D.F. acknowledges support from European Projects Nanoantenna (FP7 No. 241818, FOCUS FP7 No. 270483). M.I.S. acknowledges support from the Max Planck Society and the Deutsche Forschungsgemeinschaft Cluster of Excellence: Munich Center for Advanced Photonics (http://www.munich-photonics.de) and the Chemical Sciences, Biosciences and Geosciences Division (grant no. DE-FG02-01ER15213) of the Materials Sciences and Engineering Division of the Office of Basic Energy Sciences, Office of Science, US Department of Energy (grant no. DE-FG02-11ER46789).

Author information

Authors and Affiliations

Authors

Contributions

M.I.S. and E.D.F. conceived the adiabatic plasmonic hot-electron nanoscopy. A.G., A.T., B.T. and E.D.F designed the experiments and A.G., A.T. and B.T. performed the experiments and analysed the data. R.P.Z. and A.A. performed the numerical simulations. M.F. and M.M. realized the nanostructured devices. E.D.F. supervised the whole project. All authors contributed to the discussion of the results and to writing the manuscript.

Corresponding author

Correspondence to E. Di Fabrizio.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 4395 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Giugni, A., Torre, B., Toma, A. et al. Hot-electron nanoscopy using adiabatic compression of surface plasmons. Nature Nanotech 8, 845–852 (2013). https://doi.org/10.1038/nnano.2013.207

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.207

This article is cited by

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research