Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Formation and electronic properties of InSb nanocrosses

Abstract

Signatures of Majorana fermions have recently been reported from measurements on hybrid superconductor–semiconductor nanowire devices. Majorana fermions are predicted to obey special quantum statistics, known as non-Abelian statistics. To probe this requires an exchange operation, in which two Majorana fermions are moved around one another, which requires at least a simple network of nanowires. Here, we report on the synthesis and electrical characterization of crosses of InSb nanowires. The InSb wires grow horizontally on flexible vertical stems, allowing nearby wires to meet and merge. In this way, near-planar single-crystalline nanocrosses are created, which can be measured by four electrical contacts. Our transport measurements show that the favourable properties of the InSb nanowire devices—high carrier mobility and the ability to induce superconductivity—are preserved in the cross devices. Our nanocrosses thus represent a promising system for the exchange of Majorana fermions.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The four-step process for synthesizing branched InSb nanowires.
Figure 2: Merging process for two InSb nanowires.
Figure 3: Crystal structure of a single-crystalline nanocross.
Figure 4: Transport through a nanocross.
Figure 5: Nanocross Hall measurements.
Figure 6: Gate-tunable supercurrent through a nanocross.

References

  1. Majorana, E. A symmetric theory of electrons and positions. Soryushiron Kenkyu (Engl. Transl.) 63, 149 (1981) [translation from Teoria simmetrica dell'electtone e del positrone. Nuovo Cimento 14, 171 (1937)].

    Google Scholar 

  2. Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices. Science 336, 1003–1007 (2012).

    Article  CAS  Google Scholar 

  3. Das, A. et al. Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions. Nature Phys. 8, 887–895 (2012).

    Article  CAS  Google Scholar 

  4. Deng, M. T. et al. Anomalous zero-bias conductance peak in a Nb–InSb nanowire–Nb hybrid device. Nano Lett. 12, 6414–6419 (2012).

    Article  CAS  Google Scholar 

  5. Freedman, M. H., Kitaev, A., Larsen, M. J. & Wang, Z. Topological quantum computation. Bull. Am. Math. Soc. 40, 31–38 (2003).

    Article  Google Scholar 

  6. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

    Article  CAS  Google Scholar 

  7. Kitaev, A. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

    Article  CAS  Google Scholar 

  8. Wilczek, F. Majorana returns. Nature Phys. 5, 614–618 (2009).

    Article  CAS  Google Scholar 

  9. Lutchyn, R. M., Sau, J. D. & Das Sarma, S. Majorana fermions and a topological phase transition in semiconductor–superconductor heterostructures. Phys. Rev. Lett. 105, 077001 (2010).

    Article  Google Scholar 

  10. Oreg, Y., Refael, G. & von Oppen, F. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002 (2010).

    Article  Google Scholar 

  11. Alicea, J., Oreg, Y., Refael, G., von Oppen, F. & Fisher, M. P. A. Non-abelian statistics and topological quantum information processing in 1D wire networks. Nature Phys. 7, 412–417 (2011).

    Article  CAS  Google Scholar 

  12. van Heck, B., Akhmerov, A. R., Hassler, F., Burrello, M. & Beenakker, C. W. J. Coulomb-assisted braiding of Majorana fermions in a Josephson junction array. New J. Phys. 14, 035019 (2012).

    Article  Google Scholar 

  13. Hyart, T. et al. Flux-controlled quantum computation with Majorana fermions. Phys. Rev. B 88, 035121 (2013).

    Article  Google Scholar 

  14. Algra, R. E. et al. Twinning superlattices in indium phosphide nanowires. Nature 456, 369–372 (2008).

    Article  CAS  Google Scholar 

  15. Wen, C-Y. et al. Periodically changing morphology of the growth interface in Si, Ge, and GaP Nanowires. Phys. Rev. Lett. 107, 025503 (2011).

    Article  Google Scholar 

  16. Glas, F., Harmand, J-C. & Patriarche, G. Why does wurtzite form in nanowires of III–V zinc blende semiconductors? Phys. Rev. Lett. 99, 146101 (2007).

    Article  Google Scholar 

  17. Dick, K. A. et al. Synthesis of branched ‘nanotrees' by controlled seeding of multiple branching events. Nature Mater. 3, 380–384 (2004).

    Article  CAS  Google Scholar 

  18. Yun, S. H., Wu, J. Z. Dibos, A., Zou, X. & Karlsson, U. O. Self-assembled boron nanowire Y-junctions. Nano Lett. 6, 385–389 (2006).

    Article  CAS  Google Scholar 

  19. Jiang, X. et al. Rational growth of branched nanowire heterostructures with synthetically encoded properties and function. Proc. Natl Acad. Sci. USA 108, 12212–12216 (2011).

    Article  CAS  Google Scholar 

  20. Manna, L., Milliron, D. J., Meisel, A., Scher, E. C. & Alivisatos, A. P. Controlled growth of tetrapod-branched inorganic nanocrystals. Nature Mater. 2, 382–385 (2003).

    Article  CAS  Google Scholar 

  21. Dai, X. et al. Tailoring the vapor–liquid–solid growth toward the self-assembly of GaAs nanowire junctions. Nano Lett. 11, 4947–4952 (2011).

    Article  CAS  Google Scholar 

  22. Suyatin, D. B. et al. Electrical properties of self-assembled branched InAs nanowire junctions. Nano Lett. 8, 1100–1104 (2008).

    Article  CAS  Google Scholar 

  23. Dalacu, D., Kam, A., Austing, D. G. & Poole, P. J. Droplet dynamics in controlled InAs nanowire interconnections. Nano Lett. 13, 2676–2681 (2013).

    Article  CAS  Google Scholar 

  24. Wagner, R. S. & Ellis, W. C. Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–90 (1964).

    Article  CAS  Google Scholar 

  25. Plissard, S. R. et al. From InSb nanowires to nanocubes: looking for the sweet spot. Nano Lett. 12, 1794–1798 (2012).

    Article  CAS  Google Scholar 

  26. Van Weperen, I. et al. Quantized conductance in an InSb nanowire. Nano Lett. 13, 387–391 (2013).

    Article  CAS  Google Scholar 

  27. Li, D. et al. Direction-specific interactions control crystal growth by oriented attachment. Science 336, 1014–1018 (2012).

    Article  CAS  Google Scholar 

  28. Doh, Y-J. et al. Tunable supercurrent through semiconductor nanowires. Science 309, 272–275 (2005).

    Article  CAS  Google Scholar 

  29. Xiang, J. et al. Ge/Si nanowire mesoscopic Josephson junctions. Nature Nanotech. 1, 208–213 (2006).

    Article  CAS  Google Scholar 

  30. Borgström, M. T. et al. In situ etching for total control over axial and radial nanowire growth. Nano Res. 3, 264–270 (2010).

    Article  Google Scholar 

  31. Kautz, R. L. & Martinis, J. M. Noise affected IV curves in small hysteretic Josephson junctions. Phys. Rev. B 42, 9903–9937 (1990).

    Article  CAS  Google Scholar 

  32. Courtois, H. et al. Origin of hysteresis in a proximity Josephson junction. Phys. Rev. Lett. 101, 067002 (2008).

    Article  CAS  Google Scholar 

  33. Fiske, M. D. Temperature and magnetic field dependences of Josephson tunneling current. Rev. Mod. Phys. 36, 221–222 (1964).

    Article  CAS  Google Scholar 

  34. Coon, D. D. & Fiske, M. D. Josephson AC and step structure in supercurrent tunneling characteristic. Phys. Rev. 138, A744–A746 (1965).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Dutch Organization for Scientific Research (NWO), the Foundation for Fundamental Research on Matter (FOM) and Microsoft Corporation Station Q. D.C. and A.G. acknowledge financial support from the European Union Seventh Framework Programme (grant agreement no. 265073, NANOWIRING).

Author information

Authors and Affiliations

Authors

Contributions

S.R.P. and E.P.A.M.B. supervised the experiments. G.W.G.I., S.R.P., D.C. and E.P.A.M.B. grew the T- and X-shaped nanowires. S.R.P. performed the XRD measurements. M.V. analysed the structures using TEM. I.v.W., J.K., L.J.C. and D.B.S. fabricated the cross devices and performed the electrical measurements. I.v.W., J.K., L.J.C., D.B.S., A.G., S.M.F. and L.P.K analysed the electrical data. The manuscript was prepared with contributions from all authors.

Corresponding authors

Correspondence to Sébastien R. Plissard or Erik P. A. M. Bakkers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 10087 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Plissard, S., van Weperen, I., Car, D. et al. Formation and electronic properties of InSb nanocrosses. Nature Nanotech 8, 859–864 (2013). https://doi.org/10.1038/nnano.2013.198

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.198

This article is cited by

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research