Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A current-driven single-atom memory

Abstract

The possibility of fabricating electronic devices with functional building blocks of atomic size is a major driving force of nanotechnology1. The key elements in electronic circuits are switches, usually realized by transistors, which can be configured to perform memory operations. Electronic switches have been miniaturized all the way down to the atomic scale2,3,4,5,6,7,8,9. However, at such scales, three-terminal devices are technically challenging to implement. Here we show that a metallic atomic-scale contact can be operated as a reliable and fatigue-resistant two-terminal switch. We apply a careful electromigration protocol to toggle the conductance of an aluminium atomic contact between two well-defined values in the range of a few conductance quanta. Using the nonlinearities of the current–voltage characteristics caused by superconductivity10 in combination with molecular dynamics and quantum transport calculations, we provide evidence that the switching process is caused by the reversible rearrangement of single atoms. Owing to its hysteretic behaviour with two distinct states, this two-terminal switch can be used as a non-volatile information storage element.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Creation of a bistable atomic switch.
Figure 2: Density plot of the counts for measuring a switch with low conductance GL and high conductance GH.
Figure 3: Transmission channel analysis of a bistable switch.
Figure 4: Scenario for the switching process of Fig. 3.
Figure 5: Atomic switch operated as a memory device through a stepwise variation of the current.

References

  1. Waser, R. Nanoelectronics and Information Technology (Wiley-VCH, 2003).

    Google Scholar 

  2. Park, J. et al. Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722–725 (2002).

    CAS  Article  Google Scholar 

  3. Liang, W., Shores, M. P., Bockrath, M., Long, J. R. & Park, H. Kondo resonance in a single-molecule transistor, Nature 417, 725–729 (2002).

    CAS  Article  Google Scholar 

  4. Kubatkin, S. et al. Single-electron transistor of a single organic molecule with access to several redox states. Nature 425, 698–701 (2003).

    CAS  Article  Google Scholar 

  5. Moth-Poulsen, K. & Bjørnholm, T. Molecular electronics with single molecules in solid-state devices. Nature Nanotech. 4, 551–556 (2009).

    CAS  Article  Google Scholar 

  6. Champagne, A. R., Pasupathy, A. N. & Ralph, D. C. Mechanically adjustable and electrically gated single-molecule transistors. Nano Lett. 5, 305–308 (2005).

    CAS  Article  Google Scholar 

  7. Martin, C. A., Smit, R. H. M., van der Zant, H. S. J. & van Ruitenbeek, J. M. A nanoelectromechanical single-atom switch. Nano Lett. 9, 2940–2945 (2009).

    CAS  Article  Google Scholar 

  8. Ballmann, S. & Weber, H. B. An electrostatic gate for mechanically controlled single-molecule junctions. New J. Phys. 14, 123028 (2012).

    Article  Google Scholar 

  9. Fuechsle, M. et al. A single-atom transistor. Nature Nanotech. 7, 242–246 (2012).

    CAS  Article  Google Scholar 

  10. Scheer, E., Joyez, P., Esteve, D., Urbina, C. & Devoret, M. H. Conduction channel transmissions of atomic-size aluminum contacts. Phys. Rev. Lett. 78, 3535–3538 (1997).

    CAS  Article  Google Scholar 

  11. Agraït, N., Yeyati, A. L. & van Ruitenbeek, J. M. Quantum properties of atomic-sized conductors. Phys. Rep. 377, 81–279 (2003).

    Article  Google Scholar 

  12. Scheer, E. et al. The signature of chemical valence in the electrical conduction through a single-atom contact. Nature 394, 154–157 (1998).

    CAS  Article  Google Scholar 

  13. Hasegawa, T., Terabe, K., Tsuruoka, T. & Aono, M. Atomic switch: atom/ion movement controlled devices for beyond von-Neumann computers. Adv. Mater. 24, 252–267 (2012).

    CAS  Article  Google Scholar 

  14. Van der Molen, S. J. & Liljeroth, P. Charge transport through molecular switches. J. Phys. 22, 133001 (2010).

    Google Scholar 

  15. Miyamachi, T. et al. Robust spin crossover and memristance across a single molecule. Nature Commun. 3, 938 (2012).

    Article  Google Scholar 

  16. Quek, S. Y. et al. Mechanically controlled binary conductance switching of a single-molecule junction. Nature Nanotech. 4, 230–234 (2009).

    CAS  Article  Google Scholar 

  17. Smith, D. P. E. Quantum point contact switches. Science 269, 371–373 (1995).

    CAS  Article  Google Scholar 

  18. Sabater, C., Untiedt, C., Palacios, J. J. & Caturla, M. J. Mechanical annealing of metallic electrodes at the atomic scale. Phys. Rev. Lett. 108, 205502 (2012).

    CAS  Article  Google Scholar 

  19. Terabe, K., Hasegawa, T., Nakayama T. & Aono, M. Quantized conductance atomic switch. Nature 433, 47–50 (2005).

    CAS  Article  Google Scholar 

  20. Geresdi A. et al. From stochastic single atomic switch to nanoscale resistive memory device. Nanoscale 3, 1504–1507 (2011).

    CAS  Article  Google Scholar 

  21. Xie, F.-Q. et al. Atomic transistors with predefined quantum conductance by reversible contact reconstruction. Nano Lett. 8, 4493–4497 (2008).

    CAS  Article  Google Scholar 

  22. Van den Brom, H. E., Yanson, A. I. & van Ruitenbeek, J. M. Characterization of individual conductance steps in metallic quantum point contacts. Physica B 252, 69–75 (1998).

    CAS  Article  Google Scholar 

  23. Park, H., Lim, A. K. L., Alivisatos, A. P., Park, J. & McEuen, P. L. Fabrication of metallic electrodes with nanometer separation by electromigration. Appl. Phys. Lett. 75, 301–303 (1999).

    CAS  Article  Google Scholar 

  24. Yanson, I. A. & van Ruitenbeek, J. M. Do histograms constitute a proof for conductance quantization? Phys. Rev. Lett. 79, 2157–2160 (1997).

    CAS  Article  Google Scholar 

  25. Cuevas, J. C., Yeyati, A. L. & Martín-Rodero, A. Microscopic origin of conducting channels in metallic atomic-size contacts. Phys. Rev. Lett. 80, 1066–1069 (1998).

    CAS  Article  Google Scholar 

  26. Makk, P., Csonka, S. & Halbritter, A. Effect of hydrogen molecules on the electronic transport through atomic-sized metallic junctions in the superconducting state. Phys. Rev. B 78, 045414 (2008).

    Article  Google Scholar 

  27. Pauly, F. et al. Theoretical analysis of the conductance histograms and structural properties of Ag, Pt, and Ni nanocontacts. Phys. Rev. B 74, 235106 (2006).

    Article  Google Scholar 

  28. Todorov, T. N., Hoekstra, J. & Sutton, A. Current-induced embrittlement of atomic wires. Phys. Rev. Lett. 86, 3606–3609 (2001).

    CAS  Article  Google Scholar 

  29. Brandbyge, M., Stokbro, K., Taylor, J., Mozos, J.-L. & Ordejón, P. Origin of current-induced forces in an atomic gold wire: a first-principles study. Phys. Rev. B 67, 193104 (2003).

    Article  Google Scholar 

  30. Lü, J. T., Brandbyge, M. & Hedegård, P. Blowing the fuse: Berry's phase and runaway vibrations in molecular conductors. Nano Lett. 10, 1657–1663 (2010).

    Article  Google Scholar 

  31. Kuekes, P. J., Stewart, D. R. & Williams, R. S. The crossbar latch: logic value storage, restoration, and inversion in crossbar circuits. J. Appl. Phys. 97, 034301 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank H-F. Pernau for experimental assistance and M. Häfner and O. Schecker for their contributions in the early phase of this study. The authors also thank P. Leiderer for disussions. This work was supported financially by the DFG (through SFB 513 and SFB 767) and by the Baden-Württemberg Stiftung (through research network ‘Functional Nanostructures’). F.P. acknowledges additional funding through the Carl Zeiss Foundation. The authors thank the NIC for computer time.

Author information

Authors and Affiliations

Authors

Contributions

C.S. performed the experiments. M.M. conducted the calculations and theoretical modelling. F.P., J.C.C., P.N. and E.S. planned the project and advised the students. All authors discussed the results and prepared the manuscript.

Corresponding author

Correspondence to E. Scheer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 7325 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schirm, C., Matt, M., Pauly, F. et al. A current-driven single-atom memory. Nature Nanotech 8, 645–648 (2013). https://doi.org/10.1038/nnano.2013.170

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.170

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research