Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Geometric curvature controls the chemical patchiness and self-assembly of nanoparticles

Abstract

When organic molecules are tethered onto non-spherical nanoparticles, their chemical properties depend on the particles’ local curvature and shape. Based on this observation, we show here that it is possible to engineer chemical patchiness across the surface of a non-spherical nanoparticle using a single chemical species. In particular, when acidic ligands are used, regions of the particle surface with different curvature become charged at different pH values of the surrounding solution. This interplay between particle shape and local electrostatics allows for fine control over nanoscale self-assembly leading to structures with varying degrees of complexity. These structures range from particle cross-stacks to open-lattice crystals, the latter with pore sizes on the order of tens of nanometres, that is, at the lower synthetic limits of metallic mesoporous materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nano-objects with varying curvatures.
Figure 2: Titration of negatively charged particles.
Figure 3: Quantification of the properties of ‘patchy’ anisotropic nano-objects.
Figure 4: Assemblies arising from electrostatic patchiness.
Figure 5: Three-dimensional, porous crystals assembled from charge-patchy nano-dumbbells.

Similar content being viewed by others

References

  1. Kassner, R. J. Effects of nonpolar environmens on redox potentials of heme compexes. Proc. Natl Acad. Sci. USA 69, 2263–2267 (1972).

    Article  CAS  Google Scholar 

  2. Yoshizawa, M., Klosterman, J. K. & Fujita, M. Functional molecular flasks: new properties and reactions within discrete, self-assembled hosts. Angew. Chem. Int. Ed. 48, 3418–3438 (2009).

    Article  CAS  Google Scholar 

  3. Zhang, X. Y. & Houk, K. N. Why enzymes are proficient catalysts: beyond the Pauling paradigm. Acc. Chem. Res. 38, 379–385 (2005).

    Article  CAS  Google Scholar 

  4. Tezcan, F. A., Winkler, J. R. & Gray, H. B. Effects of ligation and folding on reduction potentials of heme proteins. J. Am. Chem. Soc. 120, 13383–13388 (1998).

    Article  CAS  Google Scholar 

  5. Minten, I. J. et al. Catalytic capsids: the art of confinement. Chem. Sci. 2, 358–362 (2011).

    Article  CAS  Google Scholar 

  6. Trembleau, L. & Rebek, J. Helical conformation of alkanes in a hydrophobic cavitand. Science 301, 1219–1220 (2003).

    Article  CAS  Google Scholar 

  7. Iwasawa, T., Hooley, R. J. & Rebek, J. Jr. Stabilization of labile carbonyl addition intermediates by a synthetic receptor. Science 317, 493–496 (2007).

    Article  CAS  Google Scholar 

  8. Fujita, D. et al. Protein encapsulation within synthetic molecular hosts. Nature Commun. 3, 1093 (2012).

    Article  Google Scholar 

  9. Inokuma, Y. et al. X-ray analysis on the nanogram to microgram scale using porous complexes. Nature 495, 461–466 (2013).

    Article  CAS  Google Scholar 

  10. Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. & Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1169 (2005).

    Article  CAS  Google Scholar 

  11. Witt, D., Klajn, R., Barski, P. & Grzybowski, B. A. Applications properties and synthesis of omega-functionalized n-alkanethiols and disulfides—the building blocks of self-assembled monolayers. Curr. Org. Chem. 8, 1763–1797 (2004).

    Article  CAS  Google Scholar 

  12. Miszta, K. et al. Hierarchical self-assembly of suspended branched colloidal nanocrystals into superlattice structures. Nature Mater. 10, 872–876 (2011).

    Article  CAS  Google Scholar 

  13. Warren, S. C. et al. Ordered mesoporous materials from metal nanoparticle–block copolymer self-assembly. Science 320, 1748–1752 (2008).

    Article  CAS  Google Scholar 

  14. Zhao, D. Y. et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548–552 (1998).

    Article  CAS  Google Scholar 

  15. Yang, P. D., Zhao, D. Y., Margolese, D. I., Chmelka, B. F. & Stucky, G. D. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 396, 152–155 (1998).

    Article  CAS  Google Scholar 

  16. Deng, H. et al. Large-pore apertures in a series of metal–organic frameworks. Science 336, 1018–1023 (2012).

    Article  CAS  Google Scholar 

  17. Liu, K. et al. Step-growth polymerization of inorganic nanoparticles. Science 329, 197–200 (2010).

    Article  CAS  Google Scholar 

  18. DeVries, G. A. et al. Divalent metal nanoparticles. Science 315, 358–361 (2007).

    Article  CAS  Google Scholar 

  19. Glotzer, S. C. & Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nature Mater. 6, 557–562 (2007).

    Article  Google Scholar 

  20. Laibinis, P. E. et al. Comparison of the structures and wetting properties of self-assembled monolayers of normal-alkanethiols on the coinage metal-surface, Cu, Ag, Au. J. Am. Chem. Soc. 113, 7152–7167 (1991).

    Article  CAS  Google Scholar 

  21. Klajn, R., Stoddart, J. F. & Grzybowski, B. A. Nanoparticles functionalised with reversible molecular and supramolecular switches. Chem. Soc. Rev. 39, 2203–2237 (2010).

    Article  CAS  Google Scholar 

  22. Browne, K. P. & Grzybowski, B. A. Controlling the properties of self-assembled monolayers by substrate curvature. Langmuir 27, 1246–1250 (2010).

    Article  Google Scholar 

  23. Wang, D. W. et al. How and why nanoparticle's curvature regulates the apparent pKa of the coating ligands. J. Am. Chem. Soc. 133, 2192–2197 (2011).

    Article  CAS  Google Scholar 

  24. Coskun, A. et al. Molecular–mechanical switching at the nanoparticle–solvent interface: practice and theory. J. Am. Chem. Soc. 132, 4310–4320 (2010).

    Article  CAS  Google Scholar 

  25. Atkins, P. in Atkins’ Physical Chemistry 7th edn (Oxford Univ. Press, 2001).

    Google Scholar 

  26. Walker, D. A., Wilmer, C. E., Kowalczyk, B., Bishop, K. J. M. & Grzybowski, B. A. Precision assembly of oppositely and like-charged nanoobjects mediated by charge-induced dipole interactions. Nano Lett. 10, 2275–2280 (2010).

    Article  CAS  Google Scholar 

  27. Gong, P., Wu, T., Genzer, J. & Szleifer, I. Behavior of surface-anchored poly(acrylic acid) brushes with grafting density gradients on solid substrates: 2. Theory. Macromolecules 40, 8765–8773 (2007).

    Article  CAS  Google Scholar 

  28. Tagliazucchi, M., Calvo, E. J. & Szleifer, I. Molecular theory of chemically modified electrodes by redox polyelectrolytes under equilibrium conditions: comparison with experiment. J. Phys. Chem. C 112, 458–471 (2008).

    Article  CAS  Google Scholar 

  29. Longo, G. S., Thompson, D. H. & Szleifer, I. Ligand–receptor interactions between surfaces: the role of binary polymer spacers. Langmuir 24, 10324–10333 (2008).

    Article  CAS  Google Scholar 

  30. Nie, Z. H. et al. Self-assembly of metal–polymer analogues of amphiphilic triblock copolymers. Nature Mater. 6, 609–614 (2007).

    Article  CAS  Google Scholar 

  31. Grzelczak, M. et al. Steric hindrance induces crosslike self-assembly of gold nano-dumbbells. Nano Lett. 12, 4380–4384 (2012).

    Article  CAS  Google Scholar 

  32. Liu, M. Z. & Guyot-Sionnest, P. Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids. J. Phys. Chem. B 109, 22192–22200 (2005).

    Article  CAS  Google Scholar 

  33. Song, J. H., Kim, F., Kim, D. & Yang, P. D. Crystal overgrowth on gold nanorods: tuning the shape, facet, aspect ratio, and composition of the nanorods. Chem. Eur. J. 11, 910–916 (2005).

    Article  CAS  Google Scholar 

  34. Santos, A., Singh, C. & Glotzer, S. C. Coarse-grained models of tethers for fast self-assembly simulations. Phys. Rev. E 81, 011113 (2010).

    Article  Google Scholar 

  35. Kalb, J., Dukes, D., Kumar, S. K., Hoy, R. S. & Grest, G. S. End grafted polymer nanoparticles in a polymeric matrix: effect of coverage and curvature. Soft Matter 7, 1418–1425 (2011).

    Article  CAS  Google Scholar 

  36. Hill, H. D., Millstone, J. E., Banholzer, M. J. & Mirkin, C. A. The role radius of curvature plays in thiolated oligonucleotide loading on gold nanoparticles. ACS Nano 3, 418–424 (2009).

    Article  CAS  Google Scholar 

  37. Kou, X., Sun, Z., Yang, Z., Chen, H. & Wang, J. Curvature-directed assembly of gold nanocubes, nanobranches, and nanospheres. Langmuir 25, 1692–1698 (2009).

    Article  CAS  Google Scholar 

  38. Walker, D. A., Kowalczyk, B., de la Cruz, M. O. & Grzybowski, B. A. Electrostatics at the nanoscale. Nanoscale 3, 1316–1344 (2011).

    Article  CAS  Google Scholar 

  39. Walker, D. A., Browne, K. P., Kowalczyk, B. & Grzybowski, B. A. Self-assembly of nanotriangle super lattices facilitated by repulsive electrostatic interactions. Angew. Chem. Int. Ed. 49, 6760–6763 (2010).

    Article  CAS  Google Scholar 

  40. Kalsin, A. M. et al. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 312, 420–424 (2006).

    Article  CAS  Google Scholar 

  41. Wilber, A. W. et al. Reversible self-assembly of patchy particles into monodisperse icosahedral clusters. J. Chem. Phys. 127, 085106 (2007).

    Article  Google Scholar 

  42. Hahn, T. in International Tables for Crystallography, Volume A Space Group Symmetry 5th edn (Springer, 2005).

    Google Scholar 

  43. Ding, T., Song, K., Clays, K. & Tung, C. H. Fabrication of 3D photonic crystals of ellipsoids: convective self-assembly in magnetic field. Adv. Mater. 21, 1936–1940 (2009).

    Article  CAS  Google Scholar 

  44. Lee, S. H. & Liddell, C. M. Anisotropic magnetic colloids: a strategy to form complex structures using nonspherical building blocks. Small 5, 1957–1962 (2009).

    Article  CAS  Google Scholar 

  45. Demirors, A. F., Johnson, P. M., van Kats, C. M., van Blaaderen, A. & Imhof, A. Directed self-assembly of colloidal dumbbells with an electric field. Langmuir 26, 14466–14471 (2010).

    Article  CAS  Google Scholar 

  46. Forster, J. D. et al. Assembly of optical-scale dumbbells into dense photonic crystals. ACS Nano 5, 6695–6700 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Non-equilibrium Energy Research Center, which is an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (award no. DE-SC0000989). D.A.W. acknowledges support provided by the National Science Foundation (NSF) MRSEC program (DMR-1121262) at Northwestern University and the Ryan Fellowship programme.

Author information

Authors and Affiliations

Authors

Contributions

D.A.W. and E.K.L. performed the experiments and analysis of the experimental results. R.J.N. and I.S. provided theoretical analysis of pKa data. D.A.W. performed theoretical analysis of interacting particles. D.A.W. and B.A.G. conceived the experiments and wrote the paper.

Corresponding author

Correspondence to Bartosz A. Grzybowski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5355 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, D., Leitsch, E., Nap, R. et al. Geometric curvature controls the chemical patchiness and self-assembly of nanoparticles. Nature Nanotech 8, 676–681 (2013). https://doi.org/10.1038/nnano.2013.158

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.158

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing