Symmetry and magnitude of spin–orbit torques in ferromagnetic heterostructures



Recent demonstrations of magnetization switching induced by in-plane current injection in heavy metal/ferromagnetic heterostructures have drawn increasing attention to spin torques based on orbital-to-spin momentum transfer. The symmetry, magnitude and origin of spin–orbit torques (SOTs), however, remain a matter of debate. Here we report on the three-dimensional vector measurement of SOTs in AlOx/Co/Pt and MgO/CoFeB/Ta trilayers using harmonic analysis of the anomalous and planar Hall effects. We provide a general scheme to measure the amplitude and direction of SOTs as a function of the magnetization direction. Based on space and time inversion symmetry arguments, we demonstrate that heavy metal/ferromagnetic layers allow for two different SOTs having odd and even behaviour with respect to magnetization reversal. Such torques include strongly anisotropic field-like and spin transfer-like components, which depend on the type of heavy metal layer and annealing treatment. These results call for SOT models that go beyond the spin Hall and Rashba effects investigated thus far.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Torque schematics and magnetization measurements.
Figure 2: Second-harmonic Hall resistance and current-induced spin–orbit fields.
Figure 3: Angular dependence of the Hall resistance and SOT components.
Figure 4: Dependence of the field-like and spin transfer-like SOT components on the injected current density.
Figure 5: Effect of thermal annealing and stack composition on current-induced spin–orbit fields.


  1. 1

    Chappert, C., Fert, A. & Van Dau, F. N. The emergence of spin electronics in data storage. Nature Mater. 6, 813–823 (2007).

    CAS  Article  Google Scholar 

  2. 2

    Brataas, A., Kent, A. D. & Ohno, H. Current-induced torques in magnetic materials. Nature Mater. 11, 372–381 (2012).

    CAS  Article  Google Scholar 

  3. 3

    Ralph, D. C. & Stiles, M. D. Spin transfer torques. J. Magn. Magn. Mater. 320, 1190–1216 (2008).

    CAS  Article  Google Scholar 

  4. 4

    Chernyshov, A. et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field. Nature Phys. 5, 656–659 (2009).

    CAS  Article  Google Scholar 

  5. 5

    Miron, I. M. et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nature Mater. 9, 230–234 (2010).

    Article  Google Scholar 

  6. 6

    Pi, U. H. et al. Tilting of the spin orientation induced by Rashba effect in ferromagnetic metal layer. Appl. Phys. Lett. 97, 162507 (2010).

    Article  Google Scholar 

  7. 7

    Fang, D. et al. Spin–orbit-driven ferromagnetic resonance. Nature Nanotech. 6, 413–417 (2011).

    CAS  Article  Google Scholar 

  8. 8

    Suzuki, T. et al. Current-induced effective field in perpendicularly magnetized Ta/CoFeB/MgO wire. Appl. Phys. Lett. 98, 142505 (2011).

    Article  Google Scholar 

  9. 9

    Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    CAS  Article  Google Scholar 

  10. 10

    Kajiwara, Y. et al. Transmission of electrical signals by spin–wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010).

    CAS  Article  Google Scholar 

  11. 11

    Kurebayashi, H. et al. Controlled enhancement of spin-current emission by three-magnon splitting. Nature Mater. 10, 660–664 (2011).

    CAS  Article  Google Scholar 

  12. 12

    Liu, L., Moriyama, T., Ralph, D. C. & Buhrman, R. A. Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys. Rev. Lett. 106, 036601 (2011).

    Article  Google Scholar 

  13. 13

    Demidov, V. E. et al. Magnetic nano-oscillator driven by pure spin current. Nature Mater. 11, 1028–1031 (2012).

    CAS  Article  Google Scholar 

  14. 14

    Manchon, A. & Zhang, S. Theory of nonequilibrium intrinsic spin torque in a single nanomagnet. Phys. Rev. B 78, 212405 (2008).

    Article  Google Scholar 

  15. 15

    Obata, K. & Tatara, G. Current-induced domain wall motion in Rashba spin–orbit system. Phys. Rev. B 77, 214429 (2008).

    Article  Google Scholar 

  16. 16

    Manchon, A. & Zhang, S. Theory of spin torque due to spin–orbit coupling. Phys. Rev. B 79, 094422 (2009).

    Article  Google Scholar 

  17. 17

    Garate, I. & MacDonald, A. Influence of a transport current on magnetic anisotropy in gyrotropic ferromagnets. Phys. Rev. B 80, 134403 (2009).

    Article  Google Scholar 

  18. 18

    Matos-Abiague, A. & Rodríguez-Suárez, R. Spin–orbit coupling mediated spin torque in a single ferromagnetic layer. Phys. Rev. B 80, 094424 (2009).

    Article  Google Scholar 

  19. 19

    Haney, P. M. & Stiles, M. D. Current-induced torques in the presence of spin–orbit coupling. Phys. Rev. Lett. 105, 126602 (2010).

    Article  Google Scholar 

  20. 20

    Vedyayev, A., Strelkov, N., Chshiev, M., Ryzhanova, N. & Dieny, B. Spin transfer torques induced by spin Hall effect. Preprint at (2011).

  21. 21

    Wang, X. & Manchon, A. Rashba spin torque in an ultrathin ferromagnetic metal layer. Preprint at (2011).

  22. 22

    Wang, X. & Manchon, A. Diffusive spin dynamics in ferromagnetic thin films with a Rashba interaction. Phys. Rev. Lett. 108, 117201 (2012).

    Article  Google Scholar 

  23. 23

    Manchon, A. Spin Hall effect versus Rashba torque: a diffusive approach. Preprint at (2012).

  24. 24

    Pesin, D. A. & MacDonald, A. H. Quantum kinetic theory of current-induced torques in Rashba ferromagnets. Phys. Rev. B 86, 014416 (2012).

    Article  Google Scholar 

  25. 25

    Haney, P. M., Lee, H-W., Lee, K-J., Manchon, A. & Stiles, M. D. Current induced torques and interfacial spin–orbit coupling: semiclassical modeling. Phys. Rev. B 87, 174411 (2013).

    Article  Google Scholar 

  26. 26

    Kim, K-W., Seo, S-M., Ryu, J., Lee, K-J. & Lee, H-W. Magnetization dynamics induced by in-plane currents in ultrathin magnetic nanostructures with Rashba spin–orbit coupling. Phys. Rev. B 85, 180404 (2012).

    Article  Google Scholar 

  27. 27

    Van der Bijl, E. & Duine, R. A. Current-induced torques in textured Rashba ferromagnets. Phys. Rev. B 86, 094406 (2012).

    Article  Google Scholar 

  28. 28

    Dyakonov, M. I. & Perel, V. I. Possibility of orienting electron spins with current. JETP Lett. 13, 467–469 (1971).

    Google Scholar 

  29. 29

    Bychkov, Y. A. & Rashba, E. I. Properties of a 2d electron-gas with lifted spectral degeneracy. JETP Lett. 39, 78–81 (1984).

    Google Scholar 

  30. 30

    Dresselhaus, G. Spin–orbit coupling effects in zinc blende structures. Phys. Rev. 100, 580–586 (1955).

    CAS  Article  Google Scholar 

  31. 31

    Zhang, S., Levy, P. & Fert, A. Mechanisms of spin-polarized current-driven magnetization switching. Phys. Rev. Lett. 88, 236601 (2002).

    CAS  Article  Google Scholar 

  32. 32

    Tserkovnyak, Y., Brataas, A. & Bauer, G. E. W. Theory of current-driven magnetization dynamics in inhomogeneous ferromagnets. J. Magn. Magn. Mater. 320, 1282–1292 (2008).

    CAS  Article  Google Scholar 

  33. 33

    Liu, L., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrman, R. A. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys. Rev. Lett. 109, 096602 (2012).

    Article  Google Scholar 

  34. 34

    Avci, C. O. et al. Magnetization switching of an MgO/Co/Pt layer by in-plane current injection. Appl. Phys. Lett. 100, 212404 (2012).

    Article  Google Scholar 

  35. 35

    Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    CAS  Article  Google Scholar 

  36. 36

    Gaudin, G., Miron, I. M., Gambardella, P. & Schuhl, A. Magnetic memory element. WO patent 2012/014131 (2012).

  37. 37

    Gaudin, G., Miron, I. M., Gambardella, P. & Schuhl, A. Writable magnetic element. WO patent 2012/014132 (2012).

  38. 38

    Kim, J. et al. Layer thickness dependence of the current-induced effective field vector in Ta|CoFeB|MgO. Nature Mater. 12, 240–245 (2013).

    CAS  Article  Google Scholar 

  39. 39

    Miron, I. et al. Domain wall spin torquemeter. Phys. Rev. Lett. 102, 137202 (2009).

    CAS  Article  Google Scholar 

  40. 40

    Ibrahim, I. S., Schweigert, V. A. & Peeters, F. M. Diffusive transport in a Hall junction with a microinhomogeneous magnetic field. Phys. Rev. B 57, 15416–15427 (1998).

    CAS  Article  Google Scholar 

  41. 41

    Liu, L., Buhrman, R. A. & Ralph, D. C. Review and analysis of measurements of the spin Hall effect in platinum. Preprint at (2011).

  42. 42

    Niimi, Y. et al. Experimental verification of comparability between spin–orbit and spin–diffusion lengths. Phys. Rev. Lett. 110, 016805 (2013).

    Article  Google Scholar 

  43. 43

    Rodmacq, B., Manchon, A., Ducruet, C., Auffret, S. & Dieny, B. Influence of thermal annealing on the perpendicular magnetic anisotropy of Pt/Co/AlOx trilayers. Phys. Rev. B 79, 024423 (2009).

    Article  Google Scholar 

  44. 44

    Wang, Y. et al. Effect of annealing on the magnetic tunnel junction with Co/Pt perpendicular anisotropy ferromagnetic multilayers. J. Appl. Phys. 107, 09c711 (2010).

    Article  Google Scholar 

  45. 45

    Zimmler, M. et al. Current-induced effective magnetic fields in Co/Cu/Co nanopillars. Phys. Rev. B 70, 184438 (2004).

    Article  Google Scholar 

Download references


This work was supported by the European Research Council (StG 203239 NOMAD), the European Commission under the Seventh Framework Programme (GA 318144, SPOT), Ministerio de Economía y Competitividad (ERA-Net EUI2008-03884, MAT2010-15659), Agència de Gestió d'Ajuts Universitaris i de Recerca (2009 SGR 695) and the Agence Nationale de la Recherche (ANR-10-BLANC-1011-3 ‘SPINHALL’). F.F. and Y.M. acknowledge funding under the HGF-YIG programme VH-NG-513. The samples were patterned at the NANOFAB facility of the Institut Néel (CNRS).

Author information




K.G., I.M.M. and P.G. planned the experiment. I.M.M., C.O.A., G.G. and S.A. fabricated the samples. K.G., I.M.M. and C.O.A. performed the measurements. K.G., I.M.M., C.O.A. and P.G. analysed the data. F.F. derived the general expression for the torques. K.G. and P.G. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Kevin Garello or Pietro Gambardella.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3356 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Garello, K., Miron, I., Avci, C. et al. Symmetry and magnitude of spin–orbit torques in ferromagnetic heterostructures. Nature Nanotech 8, 587–593 (2013).

Download citation

Further reading


Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research