Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Realization of pristine and locally tunable one-dimensional electron systems in carbon nanotubes

Abstract

The ability to tune local parameters of quantum Hamiltonians has been demonstrated in experimental systems including ultracold atoms1, trapped ions2, superconducting circuits3 and photonic crystals4. Such systems possess negligible disorder, enabling local tunability. Conversely, in condensed-matter systems, electrons are subject to disorder, which often destroys delicate correlated phases and precludes local tunability. The realization of a disorder-free and locally-tunable condensed-matter system thus remains an outstanding challenge. Here, we demonstrate a new technique for deterministic creation of locally-tunable, ultralow-disorder electron systems in carbon nanotubes suspended over complex electronic circuits. Using transport experiments we show that electrons can be localized at any position along the nanotube and that the confinement potential can be smoothly moved from location to location. The high mirror symmetry of transport characteristics about the nanotube centre establishes the negligible effects of electronic disorder, thus allowing experiments in precision-engineered one-dimensional potentials. We further demonstrate the ability to position multiple nanotubes at chosen separations, generalizing these devices to coupled one-dimensional systems. These capabilities could enable many novel experiments on electronics, mechanics and spins in one dimension.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Illustration of the nanoassembly technique for creating clean and complex nanotube devices.
Figure 2: Individual components of the mating technique and representative nanoassembled devices.
Figure 3: Localizing and moving electrons in clean quantum dots on a five-gated, small-bandgap nanotube device.
Figure 4: Characterization of the disorder and local electrostatic environment of the nanotube.

References

  1. 1

    Bloch, I., Dalibard, J. & Nascimbène, S. Quantum simulations with ultracold quantum gases. Nature Phys. 8, 267–276 (2012).

    CAS  Article  Google Scholar 

  2. 2

    Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nature Phys. 8, 277–284 (2012).

    CAS  Article  Google Scholar 

  3. 3

    Houck, A. A., Türeci, H. E. & Koch, J. On-chip quantum simulation with superconducting circuits. Nature Phys. 8, 292–299 (2012).

    CAS  Article  Google Scholar 

  4. 4

    Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nature Phys. 8, 285–291 (2012).

    CAS  Article  Google Scholar 

  5. 5

    Cao, J., Wang, Q. & Dai, H. Electron transport in very clean, as-grown suspended carbon nanotubes. Nature Mater. 4, 745–749 (2005).

    CAS  Article  Google Scholar 

  6. 6

    Jorio, A., Dresselhaus, G. & Dresselhaus, M. S. (eds) in Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications 455–493 (Springer, 2008).

    Book  Google Scholar 

  7. 7

    Yao, Z., Postma, H. W. C., Balents, L. & Dekker, C. Carbon nanotube intramolecular junctions. Nature 402, 273–276 (1999).

    CAS  Article  Google Scholar 

  8. 8

    Bockrath, M. et al. Luttinger-liquid behaviour in carbon nanotubes. Nature 397, 598–601 (1999).

    CAS  Article  Google Scholar 

  9. 9

    Deshpande, V. V. & Bockrath, M. The one-dimensional Wigner crystal in carbon nanotubes. Nature Phys. 4, 314–318 (2008).

    CAS  Article  Google Scholar 

  10. 10

    Deshpande, V. V. et al. Mott insulating state in ultraclean carbon nanotubes. Science 323, 106–110 (2009).

    CAS  Article  Google Scholar 

  11. 11

    Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

    CAS  Article  Google Scholar 

  12. 12

    Kuemmeth, F., Ilani, S., Ralph, D. C. & McEuen, P. L. Coupling of spin and orbital motion of electrons in carbon nanotubes. Nature 452, 448–452 (2008).

    CAS  Article  Google Scholar 

  13. 13

    Buitelaar, M. et al. Adiabatic charge pumping in carbon nanotube quantum dots. Phys. Rev. Lett. 101, 126803 (2008).

    CAS  Article  Google Scholar 

  14. 14

    Churchill, H. et al. Relaxation and dephasing in a two-electron 13C nanotube double quantum dot. Phys. Rev. Lett. 102, 2–5 (2009).

    Article  Google Scholar 

  15. 15

    Kuemmeth, F., Churchill, H. O. H., Herring, P. K. & Marcus, C. M. Carbon nanotubes for coherent spintronics. Mater. Today 13, 18–26 (2010).

    CAS  Article  Google Scholar 

  16. 16

    Jespersen, T. S. et al. Gate-dependent spin–orbit coupling in multielectron carbon nanotubes. Nature Phys. 7, 348–353 (2011).

    CAS  Article  Google Scholar 

  17. 17

    Pei, F., Laird, E. A., Steele, G. A. & Kouwenhoven, L. P. Valley–spin blockade and spin resonance in carbon nanotubes. Nature Nanotech. 7, 630–634 (2012).

    CAS  Article  Google Scholar 

  18. 18

    Sazonova, V. et al. A tunable carbon nanotube electromechanical oscillator. Nature 431, 284–287 (2004).

    CAS  Article  Google Scholar 

  19. 19

    Leturcq, R. et al. Franck–Condon blockade in suspended carbon nanotube quantum dots. Nature Phys. 5, 327–331 (2009).

    CAS  Article  Google Scholar 

  20. 20

    Steele, G. A. et al. Strong coupling between single-electron tunneling and nanomechanical motion. Science 325, 1103–1107 (2009).

    CAS  Article  Google Scholar 

  21. 21

    Lassagne, B. et al. Coupling mechanics to charge transport in carbon nanotube mechanical resonators. Science 325, 1107–1110 (2009).

    CAS  Article  Google Scholar 

  22. 22

    Sahoo, S. et al. Electric field control of spin transport. Nature Phys. 1, 99–102 (2005).

    CAS  Article  Google Scholar 

  23. 23

    Jarillo-Herrero, P., Van Dam, J. A. & Kouwenhoven, L. P. Quantum supercurrent transistors in carbon nanotubes. Nature 439, 953–956 (2006).

    CAS  Article  Google Scholar 

  24. 24

    Hauptmann, J. R., Paaske, J. & Lindelof, P. E. Electric-field-controlled spin reversal in a quantum dot with ferromagnetic contacts. Nature Phys. 4, 373–376 (2008).

    CAS  Article  Google Scholar 

  25. 25

    Pillet, J-D. et al. Andreev bound states in supercurrent-carrying carbon nanotubes revealed. Nature Phys. 6, 965–969 (2010).

    CAS  Article  Google Scholar 

  26. 26

    Schindele, J., Baumgartner, A. & Schönenberger, C. Near-unity Cooper pair splitting efficiency. Phys. Rev. Lett. 109, 157002 (2012).

    CAS  Article  Google Scholar 

  27. 27

    McEuen, P., Bockrath, M., Cobden, D., Yoon, Y-G. & Louie, S. Disorder, pseudospins, and backscattering in carbon nanotubes. Phys. Rev. Lett. 83, 5098–5101 (1999).

    CAS  Article  Google Scholar 

  28. 28

    Woodside, M. T. & McEuen, P. L. Scanned probe imaging of single-electron charge states in nanotube quantum dots. Science 296, 1098–1101 (2002).

    CAS  Article  Google Scholar 

  29. 29

    Wu, C. C., Liu, C. H. & Zhong, Z. One-step direct transfer of pristine single-walled carbon nanotubes for functional nanoelectronics. Nano Lett. 10, 1032–1036 (2010).

    CAS  Article  Google Scholar 

  30. 30

    Steele, G. A., Gotz, G. & Kouwenhoven, L. P. Tunable few-electron double quantum dots and Klein tunnelling in ultraclean carbon nanotubes. Nature Nanotech. 4, 363–367 (2009).

    CAS  Article  Google Scholar 

  31. 31

    Liang, W. et al. Fabry–Perot interference in a nanotube electron waveguide. Nature 411, 665–669 (2001).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank N. Shadmi and E. Joselevich for nanotube growth in the initial stages of the project, D. Mahalu for electron-beam writing, A. Yoffe and S. Garusi for dry etching and F. Kuemmeth, P. McEuen, H. Shtrikman, F. von-Oppen and A. Yacoby for comments on the manuscript. S.I. acknowledges financial support from the ISF Legacy Heritage foundation (grant 2005/08-80.0), the Bi-National Science Foundation (BSF) (grant 710647-03), the Minerva Foundation (grant 780054), the ERC Starters (grant 258753), the Marie Curie People (grant 239322) (IRG) and the Alon Fellowship. S.I. is incumbent of the William Z. and Eda Bess Novick career development chair.

Author information

Affiliations

Authors

Contributions

All authors conceived, designed and performed the experiments. J.W., S.P., A.B., A.H. and S.I. analysed the data. S.P., A.B. and A.H. contributed analysis tools. J.W. and S.I. wrote the paper.

Corresponding author

Correspondence to S. Ilani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1556 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Waissman, J., Honig, M., Pecker, S. et al. Realization of pristine and locally tunable one-dimensional electron systems in carbon nanotubes. Nature Nanotech 8, 569–574 (2013). https://doi.org/10.1038/nnano.2013.143

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research