Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Observation of Dirac plasmons in a topological insulator

Abstract

Plasmons are quantized collective oscillations of electrons and have been observed in metals and doped semiconductors. The plasmons of ordinary, massive electrons have been the basic ingredients of research in plasmonics and in optical metamaterials for a long time1. However, plasmons of massless Dirac electrons have only recently been observed in graphene, a purely two-dimensional electron system2. Their properties are promising for novel tunable plasmonic metamaterials in the terahertz and mid-infrared frequency range3. Dirac fermions also occur in the two-dimensional electron gas that forms at the surface of topological insulators as a result of the strong spin–orbit interaction existing in the insulating bulk phase4. One may therefore look for their collective excitations using infrared spectroscopy. Here we report the first experimental evidence of plasmonic excitations in a topological insulator (Bi2Se3). The material was prepared in thin micro-ribbon arrays of different widths W and periods 2W to select suitable values of the plasmon wavevector k. The linewidth of the plasmon was found to remain nearly constant at temperatures between 6 K and 300 K, as expected when exciting topological carriers. Moreover, by changing W and measuring the plasmon frequency in the terahertz range versus k we show, without using any fitting parameter, that the dispersion curve agrees quantitatively with that predicted for Dirac plasmons.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Extinction coefficients of the microribbon arrays of Bi2Se3 topological insulators in the terahertz range.
Figure 2: Extraction of the bare plasmon and phonon contributions from the extinction data through a Fano fit.
Figure 3: Experimental and theoretical dispersion of plasmons in Bi2Se3.

References

  1. Maier, S. A. Plasmonics: Fundamentals and Applications (Springer, 2007).

    Book  Google Scholar 

  2. Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotech. 6, 630–634 (2011).

    Article  CAS  Google Scholar 

  3. Grigorenko, A. N., Polini, M. & Novoselov, K. S. Graphene plasmonics. Nature Photon. 6, 749–758 (2012).

    Article  CAS  Google Scholar 

  4. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  CAS  Google Scholar 

  5. Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    Article  CAS  Google Scholar 

  6. Moore, J. E. The birth of topological insulators. Nature 464, 194–198 (2010).

    Article  CAS  Google Scholar 

  7. Collins, G. P. Computing with quantum knots. Sci. Am. 294, 57–63 (2006).

    Google Scholar 

  8. Kitaev, A. & Preskill, J. Topological entanglement entropy. Phys. Rev. Lett. 96, 110404 (2006).

    Article  Google Scholar 

  9. Zhang, X., Wang, J. & Zhang, S.-C. Topological insulators for high-performance terahertz to infrared applications. Phys. Rev. B 82, 245107 (2010).

    Article  Google Scholar 

  10. Chen, Y. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3 . Science 325, 178–181 (2009).

    Article  CAS  Google Scholar 

  11. Allen, S. J., Tsui, D. C. & Logan R. A. Observation of the two-dimensional plasmon in silicon inversion layers. Phys. Rev. Lett. 38, 980–983 (1977).

    Article  CAS  Google Scholar 

  12. Koppens, F. H. L., Chang, D. E. & de Abajo, J. C. Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett. 11, 3370–3377 (2011).

    Article  CAS  Google Scholar 

  13. Nikitin, A. Yu., Guinea, F., Garcia Vidal, F. J. & Martin Moreno, L. Edge and waveguide terahertz surface plasmon modes in graphene microribbons. Phys. Rev. B 84, 161407 (2011).

    Article  Google Scholar 

  14. Nikitin, A. Yu., Garcia Vidal, F. J. & Martin Moreno, L. Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons. Phys. Rev. B 85, 081405(R) (2012).

    Article  Google Scholar 

  15. Bansal, N., Kim, Y. S., Brahlek, M., Edrey, E. & Oh, S. Thickness-independent transport channels in topological insulator Bi2Se3 thin films. Phys. Rev. Lett. 109, 116804 (2012).

    Article  Google Scholar 

  16. Bansal, N., et al. Epitaxial growth of topological insulator Bi2Se3 thin film on Si(111) with atomically sharp interface. Thin Solid Film 520, 224–229 (2011).

    Article  CAS  Google Scholar 

  17. Di Pietro, P. et al. Optical conductivity of bismuth-based topological insulators. Phys. Rev. B 86, 4701 (2012).

    Article  Google Scholar 

  18. Valdes Aguilar, R. et al. THz response and colossal Kerr rotation from the surface states of the topological insulator Bi2Se3 . Phys. Rev. Lett. 86, 045439 (2012).

    Google Scholar 

  19. Fei, Z. et al. Infrared nanoscopy of Dirac plasmons at the graphene–SiO2 interface. Nano Lett. 11, 4701–4705 (2011).

    Article  CAS  Google Scholar 

  20. Giannini, V., Francescato, Y., Amrania, H., Phillips, C. C. & Maier, S. A. Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach. Nano Lett. 11, 2835–2840 (2011).

    Article  CAS  Google Scholar 

  21. Landau, L. On the vibration of the electronic plasma. J. Phys. USSR 10, 25 (1946).

    Google Scholar 

  22. Yan, H. et al. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nature Photon. 7, 394–399 (2013).

    Article  CAS  Google Scholar 

  23. Baumberg, J. J. & Williams, D. A. Coherent phonon–plasmon modes in GaAs:Alx Ga1– xAs heterostructures. Phys. Rev. B 53, R16140–R16143 (1996).

    Article  CAS  Google Scholar 

  24. Cho, G. C., Dekorsy, T., Bakker, H. J., Hovel, R. & Kurz, H. Generation and relaxation of coherent majority plasmons. Phys. Rev. Lett. 77, 4062–4065 (1996).

    Article  CAS  Google Scholar 

  25. Pan, Z.-H et al., Measurement of an exceptionally weak electron–phonon coupling on the surface of the topological insulator Bi2Se3 using angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 108, 187001 (2012).

    Article  Google Scholar 

  26. Zhu, X. et al. Electron–phonon coupling on the surface of the topological insulator Bi2Se3 determined from surface-phonon dispersion measurements. Phys. Rev. Lett. 108, 185501 (2012).

    Article  Google Scholar 

  27. Profumo, R. E. V. et al. Double-layer graphene and topological insulator thin-film plasmons. Phys. Rev. B 85, 085443 (2012).

    Article  Google Scholar 

  28. Das Sarma, S. & Hwang, E. H. Collective modes of the massless Dirac plasma. Phys. Rev. Lett. 102, 206412 (2009).

    Article  CAS  Google Scholar 

  29. Cao, Y., et al. In-plane helical orbital texture switch near the Dirac point in the topological insulator Bi2Se3 . Preprint at http://lanl.arxiv.org/abs/1209.1016 (2012).

Download references

Acknowledgements

The authors thank M. Polini for fruitful discussions about Dirac and massive plasmonic dispersions. The work at Rutgers was supported by IAMDN of Rutgers University, NSF DMR-0845464 and ONR N000141210456. The work at ‘La Sapienza’, was supported by the INFN, TERASPARC experiment.

Author information

Authors and Affiliations

Authors

Contributions

M.B., N.B., N.K. and S.O. fabricated and characterized the Bi2Se3 films. M.O., A.D.G. and V.G. performed electron-beam lithography and etching. P.D.P., F.G., O.L. and M.O. carried out the terahertz experiments and data analysis. P.C., M.O. and S.L. planned and managed the project, with inputs from all authors. All authors discussed the results. P.C., M.O. and S.L. wrote the manuscript.

Corresponding author

Correspondence to S. Lupi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 622 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Di Pietro, P., Ortolani, M., Limaj, O. et al. Observation of Dirac plasmons in a topological insulator. Nature Nanotech 8, 556–560 (2013). https://doi.org/10.1038/nnano.2013.134

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.134

This article is cited by

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research