Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets

A Corrigendum to this article was published on 04 December 2013

This article has been updated

Abstract

Understanding how nanomaterials interact with cell membranes is related to how they cause cytotoxicity and is therefore critical for designing safer biomedical applications. Recently, graphene (a two-dimensional nanomaterial) was shown to have antibacterial activity on Escherichia coli, but its underlying molecular mechanisms remain unknown. Here we show experimentally and theoretically that pristine graphene and graphene oxide nanosheets can induce the degradation of the inner and outer cell membranes of Escherichia coli, and reduce their viability. Transmission electron microscopy shows three rough stages, and molecular dynamics simulations reveal the atomic details of the process. Graphene nanosheets can penetrate into and extract large amounts of phospholipids from the cell membranes because of the strong dispersion interactions between graphene and lipid molecules. This destructive extraction offers a novel mechanism for the molecular basis of graphene's cytotoxicity and antibacterial activity.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Morphology of E. coli exposed to graphene oxide nanosheets.
Figure 2: Graphene nanosheet insertion and lipid extraction.
Figure 3: Interaction energy profiles.
Figure 4: Lipid extraction by graphene in docking simulations.
Figure 5: Robustness of lipid extraction by graphene.
Figure 6: Lipid extraction by graphene oxide nanosheets.

Change history

  • 26 November 2013

    In the version of this Article originally published, it was not made clear that the two Escherichia coli cells in the bottom left of Fig. 1a are from a different TEM image to the others. The figure and caption have now been corrected in the PDF and HTML versions of the Article.

References

  1. Rosi, N. L. et al. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312, 1027–1030 (2006).

    CAS  Article  Google Scholar 

  2. Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).

    CAS  Article  Google Scholar 

  3. Grossman, J. H. & McNeil, S. E. Nanotechnology in cancer medicine. Phys. Today 65, 38–42 (August, 2012).

    CAS  Article  Google Scholar 

  4. Nel, A. E. et al. Understanding biophysicochemical interactions at the nano–bio interface. Nature Mater. 8, 543–557 (2009).

    CAS  Article  Google Scholar 

  5. Zhao, Y., Xing, G. & Chai, Z. Nanotoxicology: are carbon nanotubes safe? Nature Nanotech. 3, 191–192 (2008).

    CAS  Article  Google Scholar 

  6. Nel, A., Xia, T., Mädler, L. & Li, N. Toxic potential of materials at the nanolevel. Science 311, 622–627 (2006).

    CAS  Article  Google Scholar 

  7. Kang, S-g. et al. Molecular mechanism of pancreatic tumor metastasis inhibition by Gd@C82(OH)22 and its implication for de novo design of nanomedicine. Proc. Natl Acad. Sci. USA 109, 15431–15436 (2012).

    CAS  Article  Google Scholar 

  8. Ge, C. et al. Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc. Natl Acad. Sci. USA 108, 16968–16973 (2011).

    CAS  Article  Google Scholar 

  9. Wong-Ekkabut, J. et al. Computer simulation study of fullerene translocation through lipid membranes. Nature Nanotech. 3, 363–368 (2008).

    CAS  Article  Google Scholar 

  10. Qiao, R., Roberts, A. P., Mount, A. S., Klaine, S. J. & Ke, P. C. Translocation of C60 and its derivatives across a lipid bilayer. Nano Lett. 7, 614–619 (2007).

    CAS  Article  Google Scholar 

  11. Shi, X., von dem Bussche, A., Hurt, R. H., Kane, A. B. & Gao, H. Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation. Nature Nanotech. 6, 714–719 (2011).

    CAS  Article  Google Scholar 

  12. Wallace, E. J. & Sansom, M. S. P. Blocking of carbon nanotube based nanoinjectors by lipids: a simulation study. Nano Lett. 8, 2751–2756 (2008).

    CAS  Article  Google Scholar 

  13. Zhang, Y. et al. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural Phaeochromocytoma-derived PC12 cells. ACS Nano 4, 3181–3186 (2010).

    CAS  Article  Google Scholar 

  14. Yang, K. & Ma, Y. Q. Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nature Nanotech. 5, 579–583 (2010).

    CAS  Article  Google Scholar 

  15. Vácha, R., Martinez-Veracoechea, F. J. & Frenkel, D. Receptor-mediated endocytosis of nanoparticles of various shapes. Nano Lett. 11, 5391–5395 (2011).

    Article  Google Scholar 

  16. Geim, A. K. Graphene: status and prospects. Science 324, 1530–1534 (2009).

    CAS  Article  Google Scholar 

  17. Feng, L. & Liu, Z. Graphene in biomedicine: opportunities and challenges. Nanomedicine 6, 317–324 (2011).

    CAS  Article  Google Scholar 

  18. Sanchez, V. C., Jachak, A., Hurt, R. H. & Kane, A. B. Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem. Res. Toxicol. 25, 15–34 (2011).

    Article  Google Scholar 

  19. Liu, Z., Robinson, J. T., Sun, X. & Dai, H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 130, 10876–10877 (2008).

    CAS  Article  Google Scholar 

  20. Okada, F. Beyond foreign-body-induced carcinogenesis: impact of reactive oxygen species derived from inflammatory cells in tumorigenic conversion and tumor progression. Int. J. Cancer 121, 2364–2372 (2007).

    CAS  Article  Google Scholar 

  21. Soldano, C., Mahmood, A. & Dujardin, E. Production, properties and potential of graphene. Carbon 48, 2127–2150 (2010).

    CAS  Article  Google Scholar 

  22. Yang, K. et al. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 10, 3318–3323 (2010).

    CAS  Article  Google Scholar 

  23. Hu, W. et al. Graphene-based antibacterial paper. ACS Nano 4, 4317–4323 (2010).

    CAS  Article  Google Scholar 

  24. Akhavan, O. & Ghaderi, E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4, 5731–5736 (2010).

    CAS  Article  Google Scholar 

  25. Liu, S. et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5, 6971–6980 (2011).

    CAS  Article  Google Scholar 

  26. Krishnamoorthy, K., Veerapandian, M., Zhang, L-H., Yun, K. & Kim, S. J. Antibacterial efficiency of graphene nanosheets against pathogenic bacteria via lipid peroxidation. J. Phys. Chem. C 116, 17280–17287 (2012).

    CAS  Article  Google Scholar 

  27. Hu, W. et al. Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano 5, 3693–3700 (2011).

    CAS  Article  Google Scholar 

  28. Hummers, W. S. & Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958).

    CAS  Article  Google Scholar 

  29. Doherty, G. J. & McMahon, H. T. Mechanisms of endocytosis. Annu. Rev. Biochem. 78, 857–902 (2009).

    CAS  Article  Google Scholar 

  30. Jiang, W., Kim, B. Y. S., Rutka, J. T. & Chan, W. C. W. Nanoparticle-mediated cellular response is size-dependent. Nature Nanotech. 3, 145–150 (2008).

    CAS  Article  Google Scholar 

  31. Liu, P., Huang, X., Zhou, R. & Berne, B. J. Observation of a dewetting transition in the collapse of the melittin tetramer. Nature 437, 159–162 (2005).

    CAS  Article  Google Scholar 

  32. Zhou, R., Huang, X., Margulis, C. J. & Berne, B. J. Hydrophobic collapse in multidomain protein folding. Science 305, 1605–1609 (2004).

    CAS  Article  Google Scholar 

  33. Berne, B. J., Weeks, J. D. & Zhou, R. Dewetting and hydrophobic interaction in physical and biological systems. Annu. Rev. Phys. Chem. 60, 85–103 (2009).

    CAS  Article  Google Scholar 

  34. Liu, S. et al. Lateral dimension-dependent antibacterial activity of graphene oxide sheets. Langmuir 28, 12364–12372 (2012).

    CAS  Article  Google Scholar 

  35. Lerf, A., He, H., Forster, M. & Klinowski, J. Structure of graphite oxide revisited. J. Phys. Chem. B 102, 4477–4482 (1998).

    CAS  Article  Google Scholar 

  36. Shih, C. J., Lin, S., Sharma, R., Strano, M. S. & Blankschtein, D. Understanding the pH-dependent behavior of graphene oxide aqueous solutions: a comparative experimental and molecular dynamics simulation study. Langmuir 28, 235–241 (2012).

    CAS  Article  Google Scholar 

  37. Medhekar, N. V., Ramasubramaniam, A., Ruoff, R. S. & Shenoy, V. B. Hydrogen bond networks in graphene oxide composite paper: structure and mechanical properties. ACS Nano 4, 2300–2306 (2010).

    CAS  Article  Google Scholar 

  38. Gómez-Navarro, C. et al. Atomic structure of reduced graphene oxide. Nano Lett. 10, 1144–1148 (2010).

    Article  Google Scholar 

  39. Ganguly, A., Sharma, S., Papakonstantinou, P. & Hamilton, J. Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J. Phys. Chem. C 115, 17009–17019 (2011).

    CAS  Article  Google Scholar 

  40. Kosynkin, D. V. et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009).

    CAS  Article  Google Scholar 

  41. Zhao, J. et al. Graphene oxide-based antibacterial cotton fabrics. Adv. Healthcare Mater. (in the press).

  42. Dowhan, W. Molecular basis for membrane phospholipid diversity: why are there so many lipids? Annu. Rev. Biochem. 66, 199–232 (1997).

    CAS  Article  Google Scholar 

  43. Lee, S-Y. & MacKinnon, R. A membrane-access mechanism of ion channel inhibition by voltage sensor toxins from spider venom. Nature 430, 232–235 (2004).

    CAS  Article  Google Scholar 

  44. Murzyn, K., Róg, T. & Pasenkiewicz-Gierula, M. Phosphatidylethanolamine–phosphatidylglycerol bilayer as a model of the inner bacterial membrane. Biophys. J. 88, 1091–1103 (2005).

    CAS  Article  Google Scholar 

  45. Zhao, W., Róg, T., Gurtovenko, A. A., Vattulainen, I. & Karttunen, M. Role of phosphatidylglycerols in the stability of bacterial membranes. Biochimie 90, 930–938 (2008).

    CAS  Article  Google Scholar 

  46. Berger, O., Edholm, O. & Jähnig, F. Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys. J. 72, 2002–2013 (1997).

  47. Anézo, C., de Vries, A. H., Höltje, H-D., Tieleman, D. P. & Marrink, S-J. Methodological issues in lipid bilayer simulations. J. Phys. Chem. B 107, 9424–9433 (2003).

    Article  Google Scholar 

  48. Benz, R. W., Castro-Román, F., Tobias, D. J. & White, S. H. Experimental validation of molecular dynamics simulations of lipid bilayers: a new approach. Biophys. J. 88, 805–817 (2005).

    CAS  Article  Google Scholar 

  49. Cai, W. et al. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science 321, 1815–1817 (2008).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank B. Berne, Yuliang Zhao, Guosheng Shi, Huan Zhang, Jingyuan Li, Seung-gu Kang, Zhen Xia and P. Das for discussions. This work was partially supported by the National Natural Science Foundation of China (grant nos 11290164, 11204269, 11172158 and 11105088), the National Basic Research Program of China (2012CB932400, 2013CB933800 and 2012CB932600) and the First-class Discipline of Universities in Shanghai. The authors acknowledge the IBM Blue Gene supercomputer and Shanghai Supercomputer Center for computational resources. R.Z. acknowledges support from the IBM Blue Gene Science Program.

Author information

Authors and Affiliations

Authors

Contributions

R.H.Z., Q.H., H.P.F. and Y.S.T. conceived and designed the experiments and simulations. Y.S.T., P.X., T.H. and M.Z. performed the simulations. M.L. performed the experiments. Y.S.T., P.X., H.P.F., R.H.Z., Q.H., C.H.F. and Z.R.L. analysed the data. Y.S.T., R.H.Z., H.P.F., P.X., M.C., Q.H. and C.H.F. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Qing Huang or Ruhong Zhou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 14250 kb)

Supplementary movie 1

Supplementary movie 1 (SWF 10563 kb)

Supplementary movie 2

Supplementary movie 2 (SWF 11062 kb)

Supplementary movie 3

Supplementary movie 3 (SWF 4116 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tu, Y., Lv, M., Xiu, P. et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nature Nanotech 8, 594–601 (2013). https://doi.org/10.1038/nnano.2013.125

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.125

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research