Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Rapid detection of bacterial resistance to antibiotics using AFM cantilevers as nanomechanical sensors

Abstract

The widespread misuse of drugs has increased the number of multiresistant bacteria1, and this means that tools that can rapidly detect and characterize bacterial response to antibiotics are much needed in the management of infections. Various techniques, such as the resazurin-reduction assays2, the mycobacterial growth indicator tube3 or polymerase chain reaction-based methods4, have been used to investigate bacterial metabolism and its response to drugs. However, many are relatively expensive or unable to distinguish between living and dead bacteria. Here we show that the fluctuations of highly sensitive atomic force microscope cantilevers can be used to detect low concentrations of bacteria, characterize their metabolism and quantitatively screen (within minutes) their response to antibiotics. We applied this methodology to Escherichia coli and Staphylococcus aureus, showing that live bacteria produced larger cantilever fluctuations than bacteria exposed to antibiotics. Our preliminary experiments suggest that the fluctuation is associated with bacterial metabolism.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Schematic representation of the set-up and the fluctuating cantilever.
Figure 2: Experiments involving the E. coli and S. aureus bacteria susceptible to ampicillin.
Figure 3: Experiments describing the correlation between metabolism and fluctuations.

References

  1. Alanis, A. J. Resistance to antibiotics: are we in the post-antibiotic era? Arch. Med. Res. 36, 697–705 (2005).

    Article  Google Scholar 

  2. Palomino, J. C. et al. Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 46, 2720–2722 (2002).

    CAS  Article  Google Scholar 

  3. Diacon, A. H. et al. Time to detection of the growth of Mycobacterium tuberculosis in MGIT 960 for determining the early bactericidal activity of antituberculosis agents. Eur. J. Clin. Microbiol. Infect. Dis. 29, 1561–1565 (2010).

    CAS  Article  Google Scholar 

  4. Boehme, C. C. et al. Rapid molecular detection of tuberculosis and rifampin resistance. N. Engl. J. Med. 363, 1005–1015 (2010).

    CAS  Article  Google Scholar 

  5. Horvat, R. T. Review of antibiogram preparation and susceptibility testing systems. Hosp. Pharm. 45 (suppl. 1), S6–S9 (2010).

    Article  Google Scholar 

  6. Boisen, A., Dohn, S., Keller, S. S., Schmid, S. & Tenje, M. Cantilever-like micromechanical sensors. Rep. Prog. Phys. 74, 036101 (2011).

    Article  Google Scholar 

  7. Waggoner, P. S. & Craighead, H. G. Micro- and nanomechanical sensors for environmental, chemical, and biological detection. Lab on a Chip 7, 1238–1255 (2007).

    CAS  Article  Google Scholar 

  8. Braun, T. et al. Quantitative time-resolved measurement of membrane protein–ligand interactions using microcantilever array sensors. Nature Nanotech. 4, 179–185 (2009).

    CAS  Article  Google Scholar 

  9. Godin, M. et al. Cantilever-based sensing: the origin of surface stress and optimization strategies. Nanotechnology 21, 075501 (2010).

    Article  Google Scholar 

  10. Ndieyira, J. W. et al. Nanomechanical detection of antibiotic mucopeptide binding in a model for superbug drug resistance. Nature Nanotech. 3, 691–696 (2008).

    CAS  Article  Google Scholar 

  11. Lang, H. P. et al. An artificial nose based on a micromechanical cantilever array. Anal. Chim. Acta 393, 59–65 (1999).

    CAS  Article  Google Scholar 

  12. Alvarez, M. & Lechuga, L. M. Microcantilever-based platforms as biosensing tools. Analyst 135, 827–836 (2010).

    CAS  Article  Google Scholar 

  13. McKendry, R. et al. Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array. Proc. Natl Acad. Sci. USA 99, 9783–9788 (2002).

    CAS  Article  Google Scholar 

  14. Reed, J., Wilkinson, P., Schmit, J., Klug, W. & Gimzewski, J. K. Observation of nanoscale dynamics in cantilever sensor arrays. Nanotechnology 17, 3873–3879 (2006).

    CAS  Article  Google Scholar 

  15. Wali, R. P. et al. Fourier transform mechanical spectroscopy of micro-fabricated electromechanical resonators: a novel, information-rich pulse method for sensor applications. Sens. Actuat. B 147, 508–516 (2010).

    Article  Google Scholar 

  16. Gfeller, K. Y., Nugaeva, N. & Hegner, M. Rapid biosensor for detection of antibiotic-selective growth of Escherichia coli. Appl. Environ. Microbiol. 71, 2626–2631 (2005).

    CAS  Article  Google Scholar 

  17. Barton, R. A. et al. Fabrication of a nanomechanical mass sensor containing a nanofluidic channel. Nano Lett. 10, 2058–2063 (2010).

    CAS  Article  Google Scholar 

  18. Park, K. et al. Measurement of adherent cell mass and growth. Proc. Natl Acad. Sci. USA 107, 20691–20696 (2010).

    CAS  Article  Google Scholar 

  19. Oden, P. I., Chen, G. Y., Steele, R. A., Warmack, R. J. & Thundat, T. Viscous drag measurements utilizing microfabricated cantilevers. Appl. Phys. Lett. 68, 3814–3816 (1996).

    CAS  Article  Google Scholar 

  20. Kasas, S., Longo, G., Alonso-Sarduy, L. & Dietler, G. Nanoscale motion detector. Swiss patent PCT/IB2011054553 (2011).

  21. Kaldalu, N., Mei, R. & Lewis, K. Killing by ampicillin and ofloxacin induces overlapping changes in Escherichia coli transcription profile. Antimicrob. Agents Chemother. 48, 890–896 (2004).

    CAS  Article  Google Scholar 

  22. Reed, J., Troke, J. J., Schmit, J., Han, S., Teitell, M. A. & Gimzewski, J. K. Live cell interferometry reveals cellular dynamism during force propagation. ACS Nano 2, 841–846 (2008).

    CAS  Article  Google Scholar 

  23. Sanchez, T., Chen, D. T. N., DeCamp, S. J., Heymann, M. & Dogic, Z. Spontaneous motion in hierarchically assembled active matter. Nature 491, 431–434 (2012).

    CAS  Article  Google Scholar 

  24. Li, Y. et al. LPS remodeling is an evolved survival strategy for bacteria. Proc. Natl Acad. Sci. USA 109, 8716–8721 (2012).

    CAS  Article  Google Scholar 

  25. Lenn, T., Leake, M. C. & Mullineaux, C. W. Clustering and dynamics of cytochrome bd-I complexes in the Escherichia coli plasma membrane in vivo. Mol. Microbiol. 70, 1397–1407 (2008).

    CAS  Article  Google Scholar 

  26. Spector, J. Mobility of BtuB and OmpF in the Escherichia coli outer membrane: implications for dynamic formation of a translocon complex. Biophys. J. 99, 3880–3886 (2010).

    CAS  Article  Google Scholar 

  27. Boiangiu, C. D. et al. Sodium ion pumps and hydrogen production in glutamate fermenting anaerobic bacteria. J. Mol. Microbiol. Biotechnol. 10, 105–119 (2005).

    CAS  Article  Google Scholar 

  28. Dimroth, P., von Ballmoos, C. & Meier, T. Catalytic and mechanical cycles in F-ATP synthases—fourth in the cycles review series. EMBO Rep. 7, 276–282 (2006).

    CAS  Article  Google Scholar 

  29. Fournier, M. F., Sauser, R., Ambrosi, D., Meister, J-J. & Verkhovsky, A. B. Force transmission in migrating cells. J. Cell Biol. 188, 287–297 (2010).

    CAS  Article  Google Scholar 

  30. Rubinstein, B., Fournier, M. F., Jacobson, K., Verkhovsky, A. B. & Mogilner, A. Actin-myosin viscoelastic flow in the keratocyte lamellipod. Biophys. J. 97, 1853–1863 (2009).

    CAS  Article  Google Scholar 

  31. Schneider, S. W. et al. Continuous detection of extracellular ATP on living cells by using atomic force microscopy. Proc. Natl Acad. Sci. USA 96, 12180–12185 (1999).

    CAS  Article  Google Scholar 

  32. Radmacher, M., Fritz, M., Hansma, H. G. & Hansma, P. K. Direct observation of enzyme-activity with the atomic-force microscope. Science 265, 1577–1579 (1994).

    CAS  Article  Google Scholar 

  33. Pelling, A. E., Sehati, S., Gralla, E. B., Valentine, J. S. & Gimzewski, J. K. Local nanomechanical motion of the cell wall of Saccharomyces cerevisiae. Science 305, 1147–1150 (2004).

    CAS  Article  Google Scholar 

  34. Pelling, A. E., Sehati, S., Gralla, E. B. & Gimzewski, J. K. Time dependence of the frequency and amplitude of the local nanomechanical motion of yeast. Nanomed. Nanotechnol. Biol. Med. 1, 178–183 (2005).

    CAS  Article  Google Scholar 

  35. Sezonov, G., Joseleau-Petit, D. & D'Ari, R. Escherichia coli physiology in Luria–Bertani broth. J. Bacteriol. 189, 8746–8749 (2007).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fond National Suisse through the FN-CR 32I3-130676 and Swiss ISJRP 122941 grants. The authors thank Ch. Gerber, H. P. Lang and F. Huber for confirming the validity of the technique using a different experimental set-up. The authors also thank G. Foffi and P. De Los Rios for critical discussions and for reviewing the manuscript, as well as J-M. Vesin for his help in the preliminary data processing.

Author information

Authors and Affiliations

Authors

Contributions

S.K., G.L., L.A.S. and G.D. designed the study. G.L., J.N. and L.A.S. performed the nanomotion sensor analyses and produced the LabVIEW software. G.L., L.A.S. and G.D. analysed the nanomotion data. G.L. and J.N. performed the glucose experiments. S.K. produced the finite elements model (FEM). G.D. performed the theoretical calculations. G.L. and S.K. collected and analysed the AFM and optical data. L.M.R. performed the MIC and MBC determination. A.B. and A.T. provided the bacteria. A.B., A.T. and L.M.R. provided the microbiological background. G.L. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to G. Longo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1480 kb)

Supplementary movie S1

Supplementary movie S1 (MP4 2524 kb)

Supplementary movie S2

Supplementary movie S2 (MP4 9049 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Longo, G., Alonso-Sarduy, L., Rio, L. et al. Rapid detection of bacterial resistance to antibiotics using AFM cantilevers as nanomechanical sensors. Nature Nanotech 8, 522–526 (2013). https://doi.org/10.1038/nnano.2013.120

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.120

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research