Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bright, long-lived and coherent excitons in carbon nanotube quantum dots

Abstract

Carbon nanotubes exhibit a wealth of unique physical properties. By virtue of their exceptionally low mass and extreme stiffness they provide ultrahigh-quality mechanical resonances1, promise long electron spin coherence times in a nuclear-spin free lattice2,3 for quantum information processing and spintronics, and feature unprecedented tunability of optical transitions4,5 for optoelectronic applications6. Excitons in semiconducting single-walled carbon nanotubes7,8 could facilitate the upconversion of spin9, mechanical10 or hybrid spin–mechanical11 degrees of freedom to optical frequencies for efficient manipulation and detection. However, successful implementation of such schemes with carbon nanotubes has been impeded by rapid exciton decoherence at non-radiative quenching sites12, environmental dephasing13 and emission intermittence14. Here we demonstrate that these limitations may be overcome by exciton localization in suspended carbon nanotubes. For excitons localized in nanotube quantum dots we found narrow optical lines free of spectral wandering, radiative exciton lifetimes15,16,17 and effectively suppressed blinking. Our findings identify the great potential of localized excitons for efficient and spectrally precise interfacing of photons, phonons and spins in novel carbon nanotube-based quantum devices.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Basic characteristics of as-grown suspended carbon nanotubes.
Figure 2: Role of spectral fluctuations in the photoluminescence lineshape.
Figure 3: Photoluminescence decay times.
Figure 4: Photoluminescence saturation and second-order coherence.

References

  1. Hüttel, A. K. et al. Carbon nanotubes as ultrahigh quality factor mechanical resonators. Nano Lett. 9, 2547–2552 (2009).

    Article  Google Scholar 

  2. Bulaev, D. V., Trauzettel, B. & Loss, D. Spin–orbit interaction and anomalous spin relaxation in carbon nanotube quantum dots. Phys. Rev. B 77, 235301 (2008).

    Article  Google Scholar 

  3. Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Mater. 8, 383–387 (2009).

    CAS  Article  Google Scholar 

  4. O'Connell, M. J. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002).

    CAS  Article  Google Scholar 

  5. Bachilo, S. M. et al. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002).

    CAS  Article  Google Scholar 

  6. Avouris, P., Freitag, M. & Perebeinos, V. Carbon-nanotube photonics and optoelectronics. Nature Photon. 2, 341–350 (2008).

    CAS  Article  Google Scholar 

  7. Wang, F., Dukovic, G., Brus, L. E. & Heinz, T. F. The optical resonances in carbon nanotubes arise from excitons. Science 308, 838–841 (2005).

    CAS  Article  Google Scholar 

  8. Maultzsch, J. et al. Exciton binding energies in carbon nanotubes from two-photon photoluminescence. Phys. Rev. B 72, 241402 (2005).

    Article  Google Scholar 

  9. Galland, C. & Imamoğlu, A. All-optical manipulation of electron spins in carbon-nanotube quantum dots. Phys. Rev. Lett. 101, 157404 (2008).

    Article  Google Scholar 

  10. Wilson-Rae, I., Galland, C., Zwerger, W. & Imamoğlu, A. Exciton-assisted optomechanics with suspended carbon nanotubes. New J. Phys. 14, 115003 (2012).

    Article  Google Scholar 

  11. Pályi, A., Struck, P. R., Rudner, M., Flensberg, K. & Burkard, G. Spin-orbit-induced strong coupling of a single spin to a nanomechanical resonator. Phys. Rev. Lett. 108, 206811 (2012).

    Article  Google Scholar 

  12. Cognet, L. et al. Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions. Science 316, 1465–1468 (2007).

    CAS  Article  Google Scholar 

  13. Crochet, J. J. et al. Disorder limited exciton transport in colloidal single-wall carbon nanotubes. Nano Lett. 12, 5091–5096 (2012).

    CAS  Article  Google Scholar 

  14. Walden-Newman, W., Sarpkaya, I. & Strauf, S. Quantum light signatures and nanosecond spectral diffusion from cavity-embedded carbon nanotubes. Nano Lett. 12, 1934–1941 (2012).

    CAS  Article  Google Scholar 

  15. Perebeinos, V., Tersoff, J. & Avouris, P. Scaling of excitons in carbon nanotubes. Phys. Rev. Lett. 92, 257402 (2004).

    Article  Google Scholar 

  16. Perebeinos, V., Tersoff, J. & Avouris, P. Radiative lifetime of excitons in carbon nanotubes. Nano Lett. 5, 2495–2499 (2005).

    CAS  Article  Google Scholar 

  17. Spataru, C. D., Ismail-Beigi, S., Capaz, R. B. & Louie, S. G. Theory and ab initio calculation of radiative lifetime of excitons in semiconducting carbon nanotubes. Phys. Rev. Lett. 95, 247402 (2005).

    Article  Google Scholar 

  18. Lefebvre, J., Austing, D. G., Bond, J. & Finnie, P. Photoluminescence imaging of suspended single-walled carbon nanotubes. Nano Lett. 6, 1603–1608 (2006).

    CAS  Article  Google Scholar 

  19. Lüer, L. et al. Size and mobility of excitons in (6, 5) carbon nanotubes. Nature Phys. 5, 54–58 (2009).

    Article  Google Scholar 

  20. Cao, J., Wang, Q. & Dai, H. Electron transport in very clean, as-grown suspended carbon nanotubes. Nature Mater. 4, 745–749 (2005).

    CAS  Article  Google Scholar 

  21. Hartschuh, A., Pedrosa, H. N., Novotny, L. & Krauss, T. D. Simultaneous fluorescence and Raman scattering from single carbon nanotubes. Science 301, 1354–1356 (2003).

    CAS  Article  Google Scholar 

  22. Lefebvre, J., Finnie, P. & Homma, Y. Temperature-dependent photoluminescence from single-walled carbon nanotubes. Phys. Rev. B 70, 045419 (2004).

    Article  Google Scholar 

  23. Htoon, H., O'Connell, M. J., Cox, P. J., Doorn, S. K. & Klimov, V. I. Low temperature emission spectra of individual single-walled carbon nanotubes: multiplicity of subspecies within single-species nanotube ensembles. Phys. Rev. Lett. 93, 027401 (2004).

    CAS  Article  Google Scholar 

  24. Högele, A., Galland, C., Winger, M. & Imamoğlu, A. Photon antibunching in the photoluminescence spectra of a single carbon nanotube. Phys. Rev. Lett. 100, 217401 (2008).

    Article  Google Scholar 

  25. Galland, C., Högele, A., Türeci, H. E. & Imamoğlu, A. Non-Markovian decoherence of localized nanotube excitons by acoustic phonons. Phys. Rev. Lett. 101, 067402 (2008).

    Article  Google Scholar 

  26. Matsuda, K., Inoue, T., Murakami, Y., Maruyama, S. & Kanemitsu, Y. Exciton fine structure in a single carbon nanotube revealed through spectral diffusion. Phys. Rev. B 77, 193405 (2008).

    Article  Google Scholar 

  27. Gokus, T. et al. Mono- and biexponential luminescence decays of individual single-walled carbon nanotubes. J. Phys. Chem. C 114, 14025–14028 (2010).

    CAS  Article  Google Scholar 

  28. Hagen, A. et al. Exponential decay lifetimes of excitons in individual single-walled carbon nanotubes. Phys. Rev. Lett. 95, 197401 (2005).

    Article  Google Scholar 

  29. Georgi, C., Böhmler, M., Qian, H., Novotny, L. & Hartschuh, A. Probing exciton propagation and quenching in carbon nanotubes with near-field optical microscopy. Phys. Status Solidi (b) 246, 2683–2688 (2009).

    CAS  Article  Google Scholar 

  30. Capaz, R. B., Spataru, C. D., Ismail-Beigi, S. & Louie, S. G. Diameter and chirality dependence of exciton properties in carbon nanotubes. Phys. Rev. B 74, 121401 (2006).

    Article  Google Scholar 

  31. Murakami, Y. & Kono, J. Nonlinear photoluminescence excitation spectroscopy of carbon nanotubes: exploring the upper density limit of one-dimensional excitons. Phys. Rev. Lett. 102, 037401 (2009).

    Article  Google Scholar 

  32. Tayo, B. O. & Rotkin, S. V. Charge impurity as a localization center for singlet excitons in single-wall nanotubes. Phys. Rev. B 86, 125431 (2012).

    Article  Google Scholar 

  33. Gomes, K. K., Mar, W., Ko, W., Guinea, F. & Manoharan, H. C. Designer Dirac fermions and topological phases in molecular graphene. Nature 483, 306–310 (2012).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank V. Perebeinos for pointing out analytical expressions for the calculation of exciton lifetimes, C. Schönenberger and M. Weiss for introducing us to their CVD technique, S. Stapfner and F. Storek for their contribution to nanotube synthesis, R. Schreiber and P. Nickels for assistance with TEM imaging, P. Maletinsky for critical reading of the manuscript and J. P. Kotthaus for continuous support. The authors acknowledge valuable discussions with A. Imamoğlu, S. Rotkin, A. Srivastava and I. Wilson-Rae. This research was funded by the German Excellence Initiative via the Nanosystems Initiative Munich (NIM), with financial support from the Center for NanoScience (CeNS) and LMUexcellent.

Author information

Authors and Affiliations

Authors

Contributions

M.S.H., R.D. and C.B. developed the CNT synthesis and fabricated the samples. M.S.H. and J.T.G. set up the experiment. M.S.H., J.T.G., J.N., R.D. and C.B. performed the measurements. M.S.H., J.N. and A.H. analysed the data and performed the theoretical modelling. M.S.H. and A.H. prepared the figures and wrote the manuscript.

Corresponding authors

Correspondence to Matthias S. Hofmann or Alexander Högele.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1533 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hofmann, M., Glückert, J., Noé, J. et al. Bright, long-lived and coherent excitons in carbon nanotube quantum dots. Nature Nanotech 8, 502–505 (2013). https://doi.org/10.1038/nnano.2013.119

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.119

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research