Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A hybrid on-chip optomechanical transducer for ultrasensitive force measurements

Abstract

Nanoscale mechanical oscillators1 are used as ultrasensitive detectors of force2, mass3 and charge4. Nanomechanical oscillators have also been coupled with optical and electronic resonators to explore the quantum properties of mechanical systems5. Here, we report an optomechanical transducer in which a Si3N4 nanomechanical beam6,7 is coupled to a disk-shaped optical resonator made of silica on a single chip. We demonstrate a force sensitivity of 74 aN Hz−1/2 at room temperature with a readout stability better than 1% at the minute scale. Our system is particularly suited for the detection of very weak incoherent forces, which is difficult with existing approaches because the force resolution scales with the fourth root of the averaging time8. By applying dissipative feedback9 based on radiation pressure, we significantly relax this constraint and are able to detect an incoherent force with a force spectral density of just 15 aN Hz−1/2 (which is 25 times less than the thermal noise) within 35 s of averaging time (which is 30 times less than the averaging time that would be needed in the absence of feedback). It is envisaged that our hybrid on-chip transducer could improve the performance of various forms of force microscopy8,10,11,12.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Hybrid nanomechanical transducer system on a chip.
Figure 2: Feedback control of the nanomechanical transducer.
Figure 3: Force resolution enhancement via optomechanical feedback control.
Figure 4: Feedback-assisted force detection.

References

  1. Ekinci, K. L. & Roukes, M. L. Nanoelectromechanical systems. Rev. Sci. Instrum. 76, 061101 (2005).

    Article  Google Scholar 

  2. Mamin, H. J. & Rugar, D. Sub-attonewton force detection at millikelvin temperatures. Appl. Phys. Lett. 79, 3358–3360 (2001).

    CAS  Article  Google Scholar 

  3. Jensen, K., Kim, K. & Zettl, A. An atomic-resolution nanomechanical mass sensor. Nature Nanotech. 3, 533–537 (2008).

    CAS  Article  Google Scholar 

  4. Cleland, A. & Roukes, M. A nanometre-scale mechanical electrometer. Nature 392, 160–162 (1998).

    Article  Google Scholar 

  5. Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the mesoscale. Science 321, 1172–1176 (2008).

    CAS  Article  Google Scholar 

  6. Verbridge, S. S., Parpia, J. M., Reichenbach, R. B., Bellan, L. M. & Craighead, H. G. High quality factor resonance at room temperature with nanostrings under high tensile stress. J. Appl. Phys. 99, 124304 (2006).

    Article  Google Scholar 

  7. Anetsberger, G. et al. Near-field cavity optomechanics with nanomechanical oscillators. Nature Phys. 5, 909–914 (2009).

    CAS  Article  Google Scholar 

  8. Rugar, D., Budakian, R., Mamin, H. & Chui, B. Single spin detection by magnetic resonance force microscopy. Nature 430, 329–332 (2004).

    CAS  Article  Google Scholar 

  9. Mancini, S., Vitali, D. & Tombesi, P. Optomechanical cooling of a macroscopic oscillator by homodyne feedback. Phys. Rev. Lett. 80, 688–691 (1998).

    CAS  Article  Google Scholar 

  10. Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

    CAS  Article  Google Scholar 

  11. Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008).

    CAS  Article  Google Scholar 

  12. Arcizet, O. et al. A single nitrogen-vacancy defect coupled to a nanomechanical oscillator. Nature Phys. 7, 879–883 (2011).

    CAS  Article  Google Scholar 

  13. LaHaye, M., Buu, O., Camarota, B. & Schwab, K. Approaching the quantum limit of a nanomechanical resonator. Science 304, 74–77 (2004).

    CAS  Article  Google Scholar 

  14. Etaki, S. et al. Motion detection of a micromechanical resonator embedded in a d.c. squid. Nature Phys. 4, 785–788 (2008).

    CAS  Article  Google Scholar 

  15. Teufel, J. D., Donner, T., Castellanos-Beltran, M. A., Harlow, J. W. & Lehnert, K. W. Nanomechanical motion measured with an imprecision below that at the standard quantum limit. Nature Nanotech. 4, 820–823 (2009).

    CAS  Article  Google Scholar 

  16. Anetsberger, G. et al. Measuring nanomechanical motion with an imprecision below the standard quantum limit. Phys. Rev. A 82, 061804 (2010).

    Article  Google Scholar 

  17. Biercuk, M. J., Uys, H., Britton, J. W., VanDevender, A. P. & Bollinger, J. J. Ultrasensitive detection of force and displacement using trapped ions. Nature Nanotech. 5, 646–650 (2010).

    CAS  Article  Google Scholar 

  18. Knünz, S. et al. Injection locking of a trapped-ion phonon laser. Phys. Rev. Lett. 105, 013004 (2010).

    Article  Google Scholar 

  19. Degen, C. L., Poggio, M., Mamin, H. J., Rettner, C. T. & Rugar, D. Nanoscale magnetic resonance imaging. Proc. Natl Acad. Sci. USA 106, 1313–1317 (2009).

    CAS  Article  Google Scholar 

  20. Arlett, J. L., Myers, E. B. & Roukes, M. L. Comparative advantages of mechanical biosensors. Nature Nanotech. 6, 203–215 (2011).

    CAS  Article  Google Scholar 

  21. Srinivasan, K., Miao, H., Rakher, M. T., Davanço, M. & Aksyuk, V. Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator. Nano Lett. 11, 791–797 (2011).

    CAS  Article  Google Scholar 

  22. Li, M., Pernice, W. H. P. & Tang, H. X. Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides. Phys. Rev. Lett. 103, 223901 (2009).

    Article  Google Scholar 

  23. Kippenberg, T. J., Kalkman, J., Polman, A. & Vahala, K. J. Demonstration of an erbium-doped microdisk laser on a silicon chip. Phys. Rev. A 74, 051802 (2006).

    Article  Google Scholar 

  24. Vernooy, D. W., Ilchenko, V. S., Mabuchi, H., Streed, E. W. & Kimble, H. J. High-Q measurements of fused-silica microspheres in the near infrared. Opt. Lett. 23, 247–249 (1998).

    CAS  Article  Google Scholar 

  25. Cai, M., Painter, O. & Vahala, K. J. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system. Phys. Rev. Lett. 85, 74–77 (2000).

    CAS  Article  Google Scholar 

  26. Mertz, J., Marti, O. & Mlynek, J. Regulation of a microcantilever response by force feedback. Appl. Phys. Lett. 62, 2344–2346 (1993).

    Article  Google Scholar 

  27. Cohadon, P. F., Heidmann, A. & Pinard, M. Cooling of a mirror by radiation pressure. Phys. Rev. Lett. 83, 3174–3177 (1999).

    CAS  Article  Google Scholar 

  28. Kleckner, D. & Bouwmeester, D. Sub-kelvin optical cooling of a micromechanical resonator. Nature 444, 75–78 (2006).

    CAS  Article  Google Scholar 

  29. Arcizet, O. et al. High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor. Phys. Rev. Lett. 97, 133601 (2006).

    CAS  Article  Google Scholar 

  30. Poggio, M., Degen, C. L., Mamin, H. J. & Rugar, D. Feedback cooling of a cantilever's fundamental mode below 5 mK. Phys. Rev. Lett. 99, 017201 (2007).

    CAS  Article  Google Scholar 

  31. Poot, M., Etaki, S., Yamaguchi, H. & van der Zant, H. S. J. Discrete-time quadrature feedback cooling of a radio-frequency mechanical resonator. Appl. Phys. Lett. 99, 013113 (2011).

    Article  Google Scholar 

  32. Yasumura, K. et al. Quality factors in micron- and submicron-thick cantilevers. J. Microelectromech. Syst. 9, 117–125 (2000).

    CAS  Article  Google Scholar 

  33. Rivière, R. et al. Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state. Phys. Rev. A 83, 063835 (2011).

    Article  Google Scholar 

  34. Van der Sar, T. et al. Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center. Appl. Phys. Lett. 94, 173104 (2009).

    Article  Google Scholar 

  35. Schell, A. W. et al. A scanning probe-based pick-and-place procedure for assembly of integrated quantum optical hybrid devices. Rev. Sci. Instrum. 82, 073709 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

Fabrication was carried out at the Center of MicroNanotechnology (CMi) at EPFL. The authors acknowledge financial support from NCCR Quantum Photonics, the DARPA Orchid programme, the SNF and an ERC starting grant (SIMP).

Author information

Authors and Affiliations

Authors

Contributions

T.J.K. and E.G. conceived the hybrid transducer. E.G. performed the fabrication and modelling. P.V. designed and conceived the incoherent force resolution enhancement scheme and performed the theoretical calculations. E.G. and P.V. performed the measurements and analysed the data. E.G. and P.V. wrote the manuscripts with critical comments from T.J.K. All stages of the work were supervised by T.J.K.

Corresponding authors

Correspondence to P. Verlot or T. J. Kippenberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1058 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gavartin, E., Verlot, P. & Kippenberg, T. A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. Nature Nanotech 7, 509–514 (2012). https://doi.org/10.1038/nnano.2012.97

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.97

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research