Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Control of valley polarization in monolayer MoS2 by optical helicity

Abstract

Electronic and spintronic devices rely on the fact that free charge carriers in solids carry electric charge and spin. There are, however, other properties of charge carriers that might be exploited in new families of devices. In particular, if there are two or more minima in the conduction band (or maxima in the valence band) in momentum space, and if it is possible to confine charge carriers in one of these valleys, then it should be possible to make a valleytronic device1,2,3,4. Valley polarization, as the selective population of one valley is designated, has been demonstrated using strain5,6 and magnetic fields7,8,9,10, but neither of these approaches allows dynamic control. Here, we demonstrate that optical pumping with circularly polarized light can achieve complete dynamic valley polarization in monolayer MoS2 (refs 11, 12), a two-dimensional non-centrosymmetric crystal with direct energy gaps at two valleys13,14,15,16. Moreover, this polarization is retained for longer than 1 ns. Our results, and similar results by Zeng et al.17, demonstrate the viability of optical valley control and suggest the possibility of valley-based electronic and optoelectronic applications in MoS2 monolayers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Atomic structure and electronic structure at the K and K′ valleys of monolayer (a–c) and bilayer (d–f) MoS2.
Figure 2: Optical absorption and photoluminescence spectra of monolayer MoS2.
Figure 3: Optical control of valley-spin polarization in monolayer MoS2.
Figure 4: Substrate-independent photoluminescence helicity.

Similar content being viewed by others

References

  1. Rycerz, A., Tworzydlo, J. & Beenakker, C. W. J. Valley filter and valley valve in graphene. Nature Phys. 3, 172–175 (2007).

    Article  CAS  Google Scholar 

  2. Akhmerov, A. R. & Beenakker, C. W. J. Detection of valley polarization in graphene by a superconducting contact. Phys. Rev. Lett. 98, 157003 (2007).

    Article  CAS  Google Scholar 

  3. Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007).

    Article  Google Scholar 

  4. Yao, W., Xiao, D. & Niu, Q. Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B 77, 235406 (2008).

    Article  Google Scholar 

  5. Gunawan, O. et al. Valley susceptibility of an interacting two-dimensional electron system. Phys. Rev. Lett. 97, 186404 (2006).

    Article  CAS  Google Scholar 

  6. Takashina, K., Ono, Y., Fujiwara, A., Takahashi, Y. & Hirayama, Y. Valley polarization in Si(100) at zero magnetic field. Phys. Rev. Lett. 96, 236801 (2006).

    Article  CAS  Google Scholar 

  7. Shkolnikov, Y. P., De Poortere, E. P., Tutuc, E. & Shayegan, M. Valley splitting of AlAs two-dimensional electrons in a perpendicular magnetic field. Phys. Rev. Lett. 89, 226805 (2002).

    Article  CAS  Google Scholar 

  8. Bishop, N. C. et al. Valley polarization and susceptibility of composite fermions around a filling factor ν=3/2. Phys. Rev. Lett. 98, 266404 (2007).

    Article  CAS  Google Scholar 

  9. Eng, K., McFarland, R. N. & Kane, B. E. Integer quantum Hall effect on a six-valley hydrogen-passivated silicon (111) surface. Phys. Rev. Lett. 99, 016801 (2007).

    Article  CAS  Google Scholar 

  10. Zhu, Z., Collaudin, A., Fauque, B., Kang, W. & Behnia, K. Field-induced polarization of Dirac valleys in bismuth. Nature Phys. 8, 89–94 (2012).

    Article  CAS  Google Scholar 

  11. Xiao, D., Liu, G. B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article  Google Scholar 

  12. Cao, T., Feng, J., Shi, J., Niu, Q. & Wang, E. MoS2 as an ideal material for valleytronics: valley-selective circular dichroism and valley Hall effect. Preprint at http://arxiv.org/abs/1112.4013 (2011).

  13. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  Google Scholar 

  14. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

    Article  CAS  Google Scholar 

  15. Lebegue, S. & Eriksson, O. Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B 79, 115409 (2009).

    Article  Google Scholar 

  16. Li, T. & Galli, G. Electronic properties of MoS2 nanoparticles. J. Phys. Chem. C 111, 16192–16196 (2007).

    Article  CAS  Google Scholar 

  17. Zeng, H., Dai, J., Wang, Y., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotech. http://dx.doi.org/10.1038/nnano.2012.95 (2012).

  18. Mattheiss, L. F. Band structures of transition-metal–dichalcogenide layer compounds. Phys. Rev. B 8, 3719–3740 (1973).

    Article  CAS  Google Scholar 

  19. Zhu, Z. Y., Cheng, Y. C. & Schwingenschlogl, U. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys. Rev. B 84, 153402 (2011).

    Article  Google Scholar 

  20. Cheiwchanchamnangij, T. & Lambrecht, W. R. L. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2 . Phys. Rev. B 85, 205302 (2012).

    Article  Google Scholar 

  21. Kheng, K. et al. Observation of negatively charged excitons X in semiconductor quantum wells. Phys. Rev. Lett. 71, 1752–1755 (1993).

    Article  CAS  Google Scholar 

  22. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nature Nanotech. 6, 147–150 (2011).

    Article  CAS  Google Scholar 

  23. Dyakonov, M. I. Spin Physics in Semiconductors (Springer, 2008).

  24. Korn, T., Heydrich, S., Hirmer, M., Schmutzler, J. & Schueller, C. Low-temperature photocarrier dynamics in monolayer MoS2 . Appl. Phys. Lett. 99, 102109 (2011).

    Article  Google Scholar 

  25. Zutic, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  CAS  Google Scholar 

  26. Meier, F. & Zakharchenya, B. P. Optical Orientation (North-Holland, 1984).

  27. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation (grant DMR-1106172 at Columbia University and grant DMR-0907477 at Case Western Reserve University). Additional support for the optical instrumentation at Columbia University was provided by the Center for Re-Defining Photovoltaic Efficiency Through Molecule Scale Control, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Basic Energy Sciences (grant DE-SC0001085). The authors thank G.H. Lee and J. Hone for help with sample preparation and I. Aleiner, W. Lambrecht and P. Kim for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

K.F.M. and J.S. developed the concept, designed the experiment and prepared the manuscript. K.F.M. performed the polarization resolved photoluminescence measurements. K.H. prepared the samples and contributed to the study of temperature dependence. All authors contributed to the interpretation of the results and writing the manuscript.

Corresponding author

Correspondence to Tony F. Heinz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2899 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mak, K., He, K., Shan, J. et al. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotech 7, 494–498 (2012). https://doi.org/10.1038/nnano.2012.96

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.96

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing