Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dispersion forces between ultracold atoms and a carbon nanotube

Abstract

Dispersion forces are long-range interactions between polarizable objects that arise from fluctuations in the electromagnetic field between them. Dispersion forces have been observed between microscopic objects such as atoms and molecules (the van der Waals interaction)1, between macroscopic objects (the Casimir interaction)2 and between an atom and a macroscopic object (the Casimir–Polder interaction)2,3. Dispersion forces are known to increase the attractive forces between the components in nanomechanical devices4, to influence adsorption rates onto nanostructures5, and to influence the interactions between biomolecules in biological systems1. In recent years, there has been growing interest in studying dispersion forces in nanoscale systems6,7,8 and in exploring the interactions between carbon nanotubes and cold atoms9,10,11. However, there are considerable difficulties in developing dispersion force theories for general, finite geometries such as nanostructures. Thus, there is a need for new experimental methods that are able to go beyond measurements of planar surfaces12,13,14,15 and nanoscale gratings16 and make measurements on isolated nanostructures. Here, we measure the dispersion force between a rubidium atom and a multiwalled carbon nanotube by inserting the nanotube into a cloud of ultracold rubidium atoms and monitoring the loss of atoms from the cloud as a function of time. We perform these experiments with both thermal clouds of ultracold atoms and with Bose–Einstein condensates. The results obtained with this approach will aid the development of theories describing quantum fields near nanostructures, and hybrid cold-atom/solid-state devices may also prove useful for applications in quantum sensing and quantum information17,18.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Carbon nanotube immersed in an ultracold quantum gas.
Figure 2: Nanotube-induced atom losses.
Figure 3: Scattering ultracold thermal atoms on the nanotube.
Figure 4: Scattering of BECs on the nanotube.

Similar content being viewed by others

References

  1. Parsegian, V. A. Van der Waals forces: A Handbook for Biologists, Chemists, Engineers, and Physicists (Cambridge Univ. Press, 2006).

    Google Scholar 

  2. Bordag, M., Klimchitskaya, G. L. & Mohideen, U. Advances in the Casimir Effect (Oxford Univ. Press, 2009).

    Book  Google Scholar 

  3. Scheel, S. & Buhmann, S. Y. Macroscopic quantum electrodynamics—concepts and applications. Acta Phys. Slovaca 58, 675–809 (2008).

    Article  CAS  Google Scholar 

  4. Bormuth, V., Varga, V., Howard, J. & Schäffer, E. Protein friction limits diffusive and directed movements of kinesin motors on microtubules. Science 325, 870–873 (2009).

    Article  CAS  Google Scholar 

  5. Rance, G. A., Marsh, D. H., Bourne, S. J., Reade, T. J. & Khlobystov, A. N. Van der Waals interactions between nanotubes and nanoparticles for controlled assembly of composite nanostructures. ACS Nano 4, 4920–4928 (2010).

    Article  CAS  Google Scholar 

  6. Milton, K. The Casimir force: feeling the heat. Nature Phys. 7, 190–191 (2011).

    Article  CAS  Google Scholar 

  7. Klimchitskaya, G. L., Mohideen, U. & Mostepanenko, V. M. The Casimir force between real materials: experiment and theory. Rev. Mod. Phys. 81, 1827–1885 (2009).

    Article  Google Scholar 

  8. Bruch, L. W. Evaluation of the van der Waals force for atomic force microscopy. Phys. Rev. B 72, 033410 (2005).

    Article  Google Scholar 

  9. Petrov, P. G. et al. Trapping cold atoms using surface-grown carbon nanotubes. Phys. Rev. A 79, 043403 (2009).

    Article  Google Scholar 

  10. Goodsell, A., Ristroph, T., Golovchenko, J. A. & Hau, L. V. Field ionization of cold atoms near the wall of a single carbon nanotube. Phys. Rev. Lett. 104, 133002 (2010).

    Article  Google Scholar 

  11. Kálmán, O., Kiss, T., Fortágh, J. & Domokos, P. Quantum galvanometer by interfacing a vibrating nanowire and cold atoms. Nano Lett. 12, 435–439 (2012).

    Article  Google Scholar 

  12. Lin, Y., Teper, I., Chin, C. & Vuletić, V. Impact of the Casimir–Polder potential and Johnson noise on Bose–Einstein condensate stability near surfaces. Phys. Rev. Lett. 92, 050404 (2004).

    Article  Google Scholar 

  13. Obrecht, J. M. et al. Measurement of the temperature dependence of the Casimir–Polder force. Phys. Rev. Lett. 98, 063201 (2007).

    Article  CAS  Google Scholar 

  14. Hunger, D. et al. Resonant coupling of a Bose–Einstein condensate to a micromechanical oscillator. Phys. Rev. Lett. 104, 143002 (2010).

    Article  Google Scholar 

  15. Bender, H., Courteille, P. W., Marzok, C., Zimmermann, C. & Slama, S. Direct measurement of intermediate-range Casimir–Polder potentials. Phys. Rev. Lett. 104, 083201 (2010).

    Article  CAS  Google Scholar 

  16. Cronin, A. D., Schmiedmayer, J. & Pritchard, D. E. Optics and interferometry with atoms and molecules. Rev. Mod. Phys. 81, 1051–1129 (2009).

    Article  CAS  Google Scholar 

  17. Birkl, G. & Fortágh J. Micro traps for quantum information processing and precision force sensing. Laser Photon. Rev. 1, 12–23 (2007).

    Article  CAS  Google Scholar 

  18. Wallquist, M., Hammerer, K., Rabl, P., Lukin, M. & Zoller, P. Hybrid quantum devices and quantum engineering. Phys. Scripta T137, 014001 (2009).

    Article  Google Scholar 

  19. Löffler, R. et al. Optimization of plasma-enhanced chemical vapor deposition parameters for the growth of individual vertical carbon nanotubes as field emitters. Carbon 49, 4197–4203 (2011).

    Article  Google Scholar 

  20. Gierling, M. et al. Cold-atom scanning probe microscopy. Nature Nanotech. 6, 446–451 (2011).

    Article  CAS  Google Scholar 

  21. Ketterle, W., Durfee, D. S. & Stamper-Kurn, D. M. in Proceedings of the International School of Physics—Enrico Fermi (eds Inguscio, M., Stringari, S. & Wieman, C. E.) 67–176 (IOS Press, 1999).

    Google Scholar 

  22. Barash, Y. S. & Kyasov, A. A. Interaction potential for two filaments and for an atom interacting with a filament. Sov. Phys. JETP 68, 39–45 (1989).

    Google Scholar 

  23. Boustimi, M., Baudon, J., Candori, P. & Robert, J. van der Waals interaction between an atom and a metallic nanowire. Phys. Rev. B 65, 155402 (2002).

    Article  Google Scholar 

  24. Blagov, E. V., Klimchitskaya, G. L. & Mostepanenko, V. M. Van der Waals interaction between microparticle and uniaxial crystal with application to hydrogen atoms and multiwall carbon nanotubes. Phys. Rev. B 71, 235401 (2005).

    Article  Google Scholar 

  25. Fermani, R., Scheel, S. & Knight, P. L. Trapping cold atoms near carbon nanotubes: thermal spin flips and Casimir–Polder potential. Phys. Rev. A 75, 062905 (2007).

    Article  Google Scholar 

  26. Eberlein, C. & Zietal, R. Retarded Casimir–Polder force on an atom near reflecting microstructures. Phys. Rev. A 80, 012504 (2009).

    Article  Google Scholar 

  27. Landau, L. D. & Lifshitz, E. M. Mechanics 3rd edn (Butterworth-Heinemann, 2001).

    Google Scholar 

  28. Fink, M. et al. s-wave scattering of a polarizable atom by an absorbing nanowire. Phys. Rev. A 81, 062714 (2010).

    Article  Google Scholar 

  29. Judd, T. E. et al. Zone-plate focusing of Bose–Einstein condensates for atom optics and erasable high-speed lithography of quantum electronic components. New J. Phys. 12, 063033 (2010).

    Article  Google Scholar 

  30. Judd, T. E., Scott, R. G. & Fromhold, T. M. Atom–chip diffraction of Bose–Einstein condensates: the role of interatomic interactions. Phys. Rev. A 78, 053623 (2008).

    Article  Google Scholar 

  31. Hammerer, K., Aspelmeyer, M., Polzik, E. S. & Zoller, P. Establishing Einstein–Poldosky–Rosen channels between nanomechanics and atomic ensembles. Phys. Rev. Lett. 102, 020501 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank B. Jetter and J. Märkle for supporting the Hamaker calculations and R. Walser, M. Schneider, H. Friedrich, M. Fink, J. Eiglsperger and J. Madroñero for helpful discussions. The authors acknowledge financial support from the BMBF (NanoFutur 03X5506) and the DFG (SFB TRR21, projects C9 and C10). A.G. and T.E.J. acknowledge financial support from the Baden-Württemberg RiSC programme, P.S. from the Studienstiftung des Deutschen Volkes, and M.G. from the Evangelisches Studienwerk Villigst. The authors also acknowledge the use of BW-grid computing resources and support from the BW Stiftung ‘Kompetenznetz Funktionelle Nanostrukturen’.

Author information

Authors and Affiliations

Authors

Contributions

A.G. and J.F. contributed to the experimental idea and supervised the project. P.S., M.G., A.G. and J.F. designed and set up the experiment. G.V. and D.K. fabricated the nanochip. P.S. and M.G. performed the experiments. P.S., M.G., T.E.J., A.G. and J.F. analysed the data and discussed the results.

Corresponding authors

Correspondence to A. Günther or J. Fortágh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneeweiss, P., Gierling, M., Visanescu, G. et al. Dispersion forces between ultracold atoms and a carbon nanotube. Nature Nanotech 7, 515–519 (2012). https://doi.org/10.1038/nnano.2012.93

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.93

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing