Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation

Abstract

Marine biofouling—the colonization of small marine microorganisms on surfaces that are directly exposed to seawater, such as ships' hulls—is an expensive problem that is currently without an environmentally compatible solution1. Biofouling leads to increased hydrodynamic drag, which, in turn, causes increased fuel consumption and greenhouse gas emissions. Tributyltin-free antifouling coatings and paints1,2,3,4 based on metal complexes or biocides have been shown to efficiently prevent marine biofouling. However, these materials can damage5 the environment through metal leaching (for example, of copper and zinc)6 and bacteria resistance7. Here, we show that vanadium pentoxide nanowires act like naturally occurring vanadium haloperoxidases8 to prevent marine biofouling. In the presence of bromide ions and hydrogen peroxide, the nanowires catalyse the oxidation of bromide ions to hypobromous acid (HOBr). Singlet molecular oxygen (1O2) is formed and this exerts strong antibacterial activity, which prevents marine biofouling without being toxic to marine biota. Vanadium pentoxide nanowires have the potential to be an alternative approach to conventional anti-biofouling agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bactericidal properties of V2O5 nanowires.
Figure 2: TEM image of V2O5 nanowires and concentration dependence of their bromination activity.
Figure 3: Steady-state kinetics of the V2O5 nanowires at pH 8.3.
Figure 4: Representative digital images showing the influence of the catalytic activity of V2O5 nanowires on the growth of Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria.
Figure 5: Application of V2O5 nanowires in paint with antibacterial/antifouling properties.
Figure 6: Effect of nanoparticles on biofouling in situ.

Similar content being viewed by others

References

  1. Banerjee, I., Pangule, R. C. & Kane, R. S. Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv. Mater. 23, 690–718 (2011).

    Article  CAS  Google Scholar 

  2. Messersmith, P. B. & Textor, M. Enzymes on nanotubes thwart fouling. Nature Nanotech. 2, 138–139 (2007).

    Article  CAS  Google Scholar 

  3. Chambers, L. D., Stokes, K. R., Walsh, F. C. & Wood, R. J. K. Modern approaches to marine antifouling coatings. Surf. Coat. Technol. 201, 3642–3652 (2006).

    Article  CAS  Google Scholar 

  4. Almeida, E., Diamantino, T. C. & Sousa, O. Marine paints: the particular case of antifouling paints. Prog. Org. Coat. 59, 2–20 (2007).

    Article  CAS  Google Scholar 

  5. Omae, I. General aspects of tin-free antifouling paints. Chem. Rev. 103, 3431–3448 (2003).

    Article  CAS  Google Scholar 

  6. Turley, P. A., Fenn, R. J. & Ritter, J. C. Pyrithiones as antifoulants: environmental chemistry and preliminary risk assessment. Biofouling 15, 175–182 (2000).

    Article  CAS  Google Scholar 

  7. Brozel, V. S., Pietersen, B. & Cloete, T. E. Resistance of bacterial cultures to nonoxidizing water-treatment bactericides by adaptation. Water Sci. Technol. 31, 169–175 (1995).

    Article  CAS  Google Scholar 

  8. Wever, R. & Hemrika, W. in Handbook of Metalloproteins (eds Messerschmidt, A., Huber, R., Poulos, T. & Wieghardt, K.) 1417–1428 (Wiley, 2001).

    Google Scholar 

  9. Rosenhahn, A., Schilp, S., Kreuzer, H. J. & Grunze, M. The role of ‘inert’ surface chemistry in marine biofouling prevention. Phys. Chem. Chem. Phys. 12, 4275–4286 (2010).

    Article  CAS  Google Scholar 

  10. Borchardt, S. A. et al. Reaction of acylated homoserine lactone bacterial signaling molecules with oxidized halogen antimicrobials. Appl. Environ. Microbiol. 67, 3174–3179 (2001).

    Article  CAS  Google Scholar 

  11. Wever, R., Tromp, M. G. M., Krenn, B. E., Marjani, A. & van Tol, M. Brominating activity of the seaweed Ascophyllum Nodosum: impact on the biosphere. Environ. Sci. Technol. 25, 446–449 (1991).

    Article  CAS  Google Scholar 

  12. Barnett, P., Hondmann, D., Simons, L. H., Ter Steeg, P. F. & Wever, R. Recombinant vanadium haloperoxidases and their uses. Patent WO/1995/027046 (1995).

  13. Wever, R., Dekker, H. L., Van Schijndel, J. W. P. M. & Vollenbroek, E. G. M. Antifouling Paint Containing Haloperoxidase and Method to Determine Halide. Patent WO/1995/027009 (1995).

  14. Weller, R. & Schrems, O. H2O2 in the marine troposphere and seawater of the Atlantic Ocean. Geophys. Res. Lett. 20, 125–128 (1993).

    Article  CAS  Google Scholar 

  15. Hasan, Z. et al. Laboratory evolved vanadium chloroperoxidase exhibits 100-fold higher halogenating activity at alkaline pH: catalytic effects from first and second coordination sphere mutations. J. Biol. Chem. 281, 9738–9744 (2006).

    Article  CAS  Google Scholar 

  16. Almeida, M. et al. Vanadium haloperoxidases from brown algae of the Laminariaceae Family. Phytochemistry 57, 633–642 (2001).

    Article  CAS  Google Scholar 

  17. Soedjak, H. S., Walker, J. V. & Butler, A. Inhibition and inactivation of vanadium bromoperoxidase by the substrate, hydrogen peroxide, and further mechanistic studies of vanadium bromoperoxidase. Biochemistry 34, 12689–12696 (1995).

    Article  CAS  Google Scholar 

  18. Crans, D. C., Smee, J. J., Gaidamauskas, E. & Yang, L. The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem. Rev. 104, 849–902 (2004).

    Article  CAS  Google Scholar 

  19. Mimoun, H. et al. Vanadium(V) peroxy complexes. New versatile biomimetic reagents for epoxidation of olefins and hydroxylation of alkanes and aromatic hydrocarbons. J. Am. Chem. Soc. 105, 3101–3110 (1983).

    Article  CAS  Google Scholar 

  20. De la Rosa, R. I., Clague, M. J. & Butler, A. A functional mimic of vanadium bromoperoxidase. J. Am. Chem. Soc. 114, 760–767 (1992).

    Article  CAS  Google Scholar 

  21. André, R. et al. V2O5 nanowires with an intrinsic peroxidase-like activity. Adv. Funct. Mater. 21, 501–509 (2011).

    Article  Google Scholar 

  22. De Boer, E. & Wever, R. The reaction mechanism of the novel vanadium bromoperoxidase. A steady-state kinetic analysis. J. Biol. Chem. 263, 12326–12332 (1988).

    CAS  Google Scholar 

  23. Butler, A. in Bioinorganic Catalysis 2nd edn (eds Reedijk, J. & Bouwman, E.) Ch. 5, 55–79 (Marcel Dekker, 1991).

    Google Scholar 

  24. Hemrika, W., Renirie, R., Dekker, H. L., Barnett, P. & Wever, R. From phosphatases to vanadium peroxidases: a similar architecture of the active site. Proc. Natl Acad. Sci. USA 94, 2145–2149 (1997).

    Article  CAS  Google Scholar 

  25. Shevelkova, A. N. & Ryabov, A. D. Irreversible inactivation of Caldariomyces fumago chloroperoxidase by hydrogen peroxide. IUBMB Life 39, 665–670 (1996).

    Article  CAS  Google Scholar 

  26. Butler, A., Clague, M. J. & Meister, G. E. Vanadium peroxide complexes. Chem. Rev. 94, 625–638 (1994).

    Article  CAS  Google Scholar 

  27. Colpas, G. J., Hamstra, B. J., Kampf, J. W. & Pecoraro, V. L. Functional models for vanadium haloperoxidase: reactivity and mechanism of halide oxidation. J. Am. Chem. Soc. 118, 3469–3478 (1996).

    Article  CAS  Google Scholar 

  28. De la Rosa, R. I., Clague, M. J. & Butler, A. A. Functional mimic of vanadium bromoperoxidase. J. Am. Chem. Soc. 114, 760–761 (1992).

    Article  CAS  Google Scholar 

  29. Ligtenbarg, A. G. J., Hage, R. & Feringa, B. L. Catalytic oxidations by vanadium complexes. Coord. Chem. Rev. 237, 89–101 (2003).

    Article  CAS  Google Scholar 

  30. Renirie, R. et al. Vanadium chloroperoxidase as a catalyst for hydrogen peroxide disproportionation to singlet oxygen in mildly acidic aqueous environment. Adv. Synth. Catal. 345, 849–858 (2003).

    Article  CAS  Google Scholar 

  31. Soedjak, H. S. & Butler, A. Mechanism of dioxygen formation catalyzed by vanadium-bromoperoxidase from Macrocystis pyrifera and Fucus distichus: steady state kinetic analysis and comparison to the mechanism of V-BrPO from Ascophyllum nodosum. Biochim. Biophys. Acta. 1079, 1–7 (1991).

    Article  CAS  Google Scholar 

  32. Butler, A. Acquisition and utilization of transition metal ions by marine organisms. Science 281, 207–210 (1998).

    Article  CAS  Google Scholar 

  33. Beers, R. F. & Sizer, I. W. Spectrophotometric methods for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195, 133–140 (1952).

    CAS  Google Scholar 

  34. Wang, D. & Sañudo-Wilhelmy, S. A. Development of an analytical protocol for the determination of V(IV) and V(V) in seawater: application to coastal environments. Mar. Chem. 112, 72–80 (2008).

    Article  CAS  Google Scholar 

  35. Sachs, L. Angewandte Statistik 242 (Springer, 1984).

    Book  Google Scholar 

Download references

Acknowledgements

This research was supported by the European community through the project BIOMINTEC (PITN-GA-2008215507) and the BMBF center of Excellence BIOTEC Marin. The authors acknowledge partial support from the Center for Complex Matter (COMATT) at the University of Mainz.

Author information

Authors and Affiliations

Authors

Contributions

F.N., R.A. and A.F.H. carried out the experiments. R.W. and W.T. conceived the experiments. B.S. and K.P.J. contributed with the ICP-MS measurements. W.T. wrote the manuscript with contributions from F.N.

Corresponding author

Correspondence to Wolfgang Tremel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 10994 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Natalio, F., André, R., Hartog, A. et al. Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nature Nanotech 7, 530–535 (2012). https://doi.org/10.1038/nnano.2012.91

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.91

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology