Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Hydrogen stabilization of metallic vanadium dioxide in single-crystal nanobeams

Abstract

Vanadium dioxide is a strongly correlated material1,2,3,4 that undergoes a metal–insulator transition5 from a high-temperature, rutile metal to a monoclinic insulating state at 67 °C. In recent years, experiments on single-crystal vanadium-dioxide nanowires grown by physical vapour deposition6 have shed light on the crucial role of strain in the structural and electronic phase diagram of this material7,8,9,10, including evidence for a new M2 phase11,12, but the detailed physics of this material is still not fully understood. The transition temperature can be reduced by doping with tungsten8,13, but this process is not reversible. Here, we show that the metal–insulator transition in nanoscale beams of vanadium dioxide can be strongly modified by doping with atomic hydrogen14 using the catalytic spillover method15. We also show that this process is completely reversible, and that the metal–insulator transition eventually vanishes when the doping exceeds a threshold value. Raman and conventional optical microscopy, electron diffraction and transmission electron microscopy provide evidence that the structure of the metallic post-hydrogenation state is similar to that of the rutile state. First-principles electronic structure calculations confirm that a distorted rutile structure is energetically favoured following hydrogenation, and also that such doping favours metallicity from both the Mott and Peierls perspectives. We anticipate that hydrogen doping will be a powerful tool for examining the metal–insulator transition and for engineering the properties of vanadium dioxide.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical and Raman microscopy of VO2 crystals.
Figure 2: Hydrogenation and structural changes.
Figure 3: Electronic transport and structural phases.
Figure 4: Ab initio calculations.

Similar content being viewed by others

References

  1. Wentzcovitch, R. M., Schulz, W. W. & Allen, P. B. VO2: Peierls or Mott–Hubbard? A view from band theory. Phys. Rev. Lett. 72, 3389–3392 (1994).

    Article  Google Scholar 

  2. Rice, T. M., Launois, H. & Pouget, J. P. Comment on ‘VO2: Peierls or Mott–Hubbard? A view from band theory’. Phys. Rev. Lett. 73, 3042 (1994).

    Article  CAS  Google Scholar 

  3. Qazilbash, M. M. et al. Correlated metallic state of vanadium dioxide. Phys. Rev. B 74, 205118 (2006).

    Article  Google Scholar 

  4. Qazilbash, M. M. et al. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 318, 1750–1753 (2007).

    Article  CAS  Google Scholar 

  5. Morin, F. J. Oxides which show a metal-to-insulator transiton at the Neel temperature. Phys. Rev. Lett. 3, 34–36 (1959).

    Article  CAS  Google Scholar 

  6. Guiton, B. S., Gu, Q., Prieto, A. L., Gudiksen, M. S. & Park, H. Single-crystalline vanadium dioxide nanowires with rectangular cross sections. J. Am. Chem. Soc. 127, 498–499 (2005).

    Article  CAS  Google Scholar 

  7. Wei, J., Wang, Z., Chen, W. & Cobden, D. H. New aspects of the metal–insulator transition in single-domain vanadium dioxide nanobeams. Nature Nanotech. 4, 420–424 (2009).

    Article  CAS  Google Scholar 

  8. Gu, Q., Falk, A., Wu, J., Ouyang, L. & Park, H. Current-driven phase oscillation and domain-wall propagation in WxV1– xO2 nanobeams. Nano Lett. 7, 363–366 (2007).

    Article  Google Scholar 

  9. Cao, J. et al. Strain engineering and one-dimensional organization of metal–insulator domains in single-crystal VO2 beams. Nature Nanotech. 4, 732–737 (2009).

    Article  CAS  Google Scholar 

  10. Liu, W.-T. et al. Intrinsic optical properties of vanadium dioxide near the insulator–metal transition. Nano Lett. 11, 466–470 (2010).

    Article  Google Scholar 

  11. Zhang, S., Chou, J. Y. & Lauhon, L. J. Direct correlation of structural domain formation with the metal insulator transition in a VO2 nanobeam. Nano Lett. 9, 4527–4532 (2009).

    Article  CAS  Google Scholar 

  12. Sohn, J. I. et al. Surface-stress-induced Mott transition and nature of associated spatial phase transition in single crystalline VO2 nanowires. Nano Lett. 9, 3392–3397 (2009).

    Article  CAS  Google Scholar 

  13. Whittaker, L., Wu, T.-L., Patridge, C. J., Sambandamurthy, G. & Banerjee, S. Distinctive finite size effects on the phase diagram and metal–insulator transitions of tungsten-doped vanadium(IV) oxide. J. Mater. Chem. 21, 5580–5592 (2011).

    Article  CAS  Google Scholar 

  14. Chippindale, A. M., Dickens, P. G. & Powell, A. V. Synthesis, characterization, and inelastic neutron scattering study of hydrogen insertion compounds of VO2 (rutile). J. Solid State Chem. 93, 526–533 (1991).

    Article  CAS  Google Scholar 

  15. Panayotov, D. A. & Yates, J. T. Spectroscopic detection of hydrogen atom spillover from Au nanoparticles supported on TiO2: use of conduction band electrons. J. Phys. Chem. C 111, 2959–2964 (2007).

    Article  CAS  Google Scholar 

  16. Kingsbury, P. I., Ohlsen, W. D. & Johnson, O. W. Defects in rutile. II. Diffusion of interstitial ions. Phys. Rev. 175, 1099–1101 (1968).

    Article  CAS  Google Scholar 

  17. Andreev, V., Kapralova, V. & Klimov, V. Effect of hydrogenation on the metal–semiconductor phase transition in vanadium dioxide thin films. Phys. Solid State 49, 2318–2322 (2007).

    Article  CAS  Google Scholar 

  18. Chenavas, J., Joubert, J. C., Capponi, J. J. & Marezio, M. Synthese de nouvelles phases denses d'oxyhydroxydes M3+OOH des metaux de la premiere serie de transition, en milieu hydrothermal à tres haute pression. J. Solid State Chem. 6, 1–15 (1973).

    Article  CAS  Google Scholar 

  19. Wu, C. et al. Hydrogen-incorporation stabilization of metallic VO2(R) phase to room temperature, displaying promising low-temperature thermoelectric effect. J. Am. Chem. Soc. 133, 13798–13801 (2011).

    Article  CAS  Google Scholar 

  20. Srivastava, R. & Chase, L. L. Raman spectrum of semiconducting and metallic VO2 . Phys. Rev. Lett. 27, 727–730 (1971).

    Article  CAS  Google Scholar 

  21. Chen, X., Liu, L., Yu, P. Y. & Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746–750 (2011).

    Article  CAS  Google Scholar 

  22. Yamashita, J. & Asano, S. Cohesive properties of alkali-halides and simple oxides in the local-density formalism. J. Phys. Soc. Jpn 52, 3506–3513 (1983).

    Article  CAS  Google Scholar 

  23. Terakura, K., Oguchi, T., Williams, A. R. & Kubler, J. Band theory of insulating transition-metal monoxides—band-structure calculations. Phys. Rev. B 30, 4734–4747 (1984).

    Article  CAS  Google Scholar 

  24. Eyert, V. VO2: a novel view from band theory. Phys. Rev. Lett. 107, 016401 (2011).

    Article  CAS  Google Scholar 

  25. Koudriachova, M. V., de Leeuw, S. W. & Harrison, N. M. First-principles study of H intercalation in rutile TiO2 . Phys. Rev. B 70, 165421 (2004).

    Article  Google Scholar 

  26. Mulliken, R. S. Electronic population analysis on LCAO-MO molecular wave functions .1. J. Chem. Phys. 23, 1833–1840 (1955).

    Article  CAS  Google Scholar 

  27. Animosov, V. I., Aryasetiawan, F. & Lichtenstein, A. I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method. J. Phys Condens. Matter 9, 767–808 (1997).

    Article  Google Scholar 

  28. Gatti, M., Bruneval, F., Olevano, V. & Reining, L. Understanding correlations in vanadium dioxide from first principles. Phys. Rev. Lett. 99, 266402 (2007).

    Article  Google Scholar 

  29. Biermann, S., Poteryaev, A., Lichtenstein, A. I. & Georges, A. Dynamical singlets and correlation-assisted Peierls transition in VO2 . Phys. Rev. Lett. 94, 026404 (2005).

    Article  CAS  Google Scholar 

  30. Clark, S. J. et al. First principles methods using CASTEP. Z. Kristallographie 220, 567–570 (2005).

    CAS  Google Scholar 

  31. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  32. Becke, A. Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J. Chem. Phys. 96, 2155–2160 (1992).

    Article  CAS  Google Scholar 

  33. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990).

    Article  CAS  Google Scholar 

  34. Fischer, T. H. & Almlof, J. General methods for geometry and wave function optimization. J. Phys. Chem. 96, 9768–9774 (1992).

    Article  CAS  Google Scholar 

  35. Cococcioni, M. & de Gironcoli, S. Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys. Rev. B 71, 035105 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the US Department of Energy (DE-FG02-06ER46337). J.W. acknowledges support from the Evans Attwell/Robert A. Welch Postdoctoral Fellowship, overseen by the R. E. Smalley Institute for Nanoscale Science and Technology at Rice University. The authors acknowledge very useful conversations with E. Morosan, C-W. Chen, M. S. Wong, J. Velazquez, L. Pretzer, N. Soultanidis, S. L. Biswal and M. Thakur. The authors also thank Yu Zhu and Bo Chen for help with XPS measurements.

Author information

Authors and Affiliations

Authors

Contributions

J.W. and H.J. fabricated the samples and performed SEM and electronic measurements. J.W. performed the optical measurements and J.W. and W.G. performed TEM measurements. A.H.N. performed and analysed the electronic structure calculations. D.N. actively guided the work. J.W., D.N. and A.H.N. wrote the manuscript.

Corresponding author

Correspondence to Douglas Natelson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1926 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, J., Ji, H., Guo, W. et al. Hydrogen stabilization of metallic vanadium dioxide in single-crystal nanobeams. Nature Nanotech 7, 357–362 (2012). https://doi.org/10.1038/nnano.2012.70

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.70

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing