Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Virus-based piezoelectric energy generation

Abstract

Piezoelectric materials can convert mechanical energy into electrical energy1,2, and piezoelectric devices made of a variety of inorganic materials3,4,5 and organic polymers6 have been demonstrated. However, synthesizing such materials often requires toxic starting compounds, harsh conditions and/or complex procedures7. Previously, it was shown that hierarchically organized natural materials such as bones8, collagen fibrils9,10 and peptide nanotubes11,12 can display piezoelectric properties. Here, we demonstrate that the piezoelectric and liquid-crystalline properties of M13 bacteriophage (phage) can be used to generate electrical energy. Using piezoresponse force microscopy, we characterize the structure-dependent piezoelectric properties of the phage at the molecular level. We then show that self-assembled thin films of phage can exhibit piezoelectric strengths of up to 7.8 pm V−1. We also demonstrate that it is possible to modulate the dipole strength of the phage, hence tuning the piezoelectric response, by genetically engineering the major coat proteins of the phage. Finally, we develop a phage-based piezoelectric generator that produces up to 6 nA of current and 400 mV of potential and use it to operate a liquid-crystal display. Because biotechnology techniques enable large-scale production of genetically modified phages, phage-based piezoelectric materials potentially offer a simple and environmentally friendly approach to piezoelectric energy generation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic of piezoelectric M13 phage structure.
Figure 2: Piezoelectric properties of monolayer phage films.
Figure 3: Piezoelectric properties of multilayer 4E-phage films.
Figure 4: Characterization of phage-based piezoelectric energy generator.

References

  1. 1

    Damjanovic, D. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61, 1267–1324 (1998).

    CAS  Article  Google Scholar 

  2. 2

    Galhardi, M. A., Guilherme, T. H. & Junior, V. L. A review of power harvesting on mechanical vibration using piezoelectric materials and applications, in Proc. 7th Brazilian Conference on Dynamics, Control and Applications 1005–1013 (Universidade Estadual Paulista (UNESP), 2008).

  3. 3

    Chen, X., Xu, S. Y., Yao, N. & Shi, Y. 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett. 10, 2133–2137 (2010).

    CAS  Article  Google Scholar 

  4. 4

    Hu, Y., Lin, L., Zhang, Y. & Wang, Z. L. Replacing a battery by a nanogenerator with 20 V output. Adv. Mater. 24, 110–114 (2012).

    CAS  Article  Google Scholar 

  5. 5

    Wang, Z. L. & Song, J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006).

    CAS  Article  Google Scholar 

  6. 6

    Chang, C., Tran, V. H., Wang, J., Fuh, Y-K. & Lin, L. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 10, 726–731 (2010).

    CAS  Article  Google Scholar 

  7. 7

    Saito, Y. et al. Lead-free piezoceramics. Nature 432, 84–87 (2004).

    CAS  Article  Google Scholar 

  8. 8

    Bassett, C. A. L. & Becker, R. O. Generation of electric potentials by bone in response to mechanical stress. Science 137, 1063–1064 (1962).

    CAS  Article  Google Scholar 

  9. 9

    Fukada, E. Piezoelectric properties of biological polymers. Q. Rev. Biophys. 16, 59–87 (1983).

    CAS  Article  Google Scholar 

  10. 10

    Minary-Jolandan, M. & Yu, M-F. Nanomechanical heterogeneity in the gap and overlap regions of type I collagen fibrils with implications for bone heterogeneity. Biomacromolecules 10, 2565–2570 (2009).

    CAS  Article  Google Scholar 

  11. 11

    Farrar, D. et al. Permanent polarity and piezoelectricity of electrospun α-helical poly(α-amino acid) fibers. Adv. Mater. 23, 3954–3958 (2011).

    CAS  Article  Google Scholar 

  12. 12

    Kholkin, A., Amdursky, N., Bdikin, I., Gazit, E. & Rosenman, G. Strong piezoelectricity in bioinspired peptide nanotubes. ACS Nano 4, 610–614 (2010).

    CAS  Article  Google Scholar 

  13. 13

    Lee, S-W., Mao, C., Flynn, C. E. & Belcher, A. M. Ordering of quantum dots using genetically engineered viruses. Science 296, 892–895 (2002).

    CAS  Article  Google Scholar 

  14. 14

    Douglas, T. & Young, M. Host–guest encapsulation of materials by assembled virus protein cages. Nature 393, 152–155 (1998).

    CAS  Article  Google Scholar 

  15. 15

    Naik, R. R., Stringer, S. J., Agarwal, G., Jones, S. E. & Stone, M. O. Biomimetic synthesis and patterning of silver nanoparticles. Nature Mater. 1, 169–172 (2002).

    CAS  Article  Google Scholar 

  16. 16

    Lee, Y. J. et al. Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes. Science 324, 1051–1055 (2009).

    CAS  Google Scholar 

  17. 17

    Nam, Y. S. et al. Biologically templated photocatalytic nanostructures for sustained light-driven water oxidation. Nature Nanotech. 5, 340–344 (2010).

    CAS  Article  Google Scholar 

  18. 18

    Merzlyak, A., Indrakanti, S. & Lee, S. W. Genetically engineered nanofiber-like viruses for tissue regenerating materials. Nano Lett. 9, 846–852 (2009).

    CAS  Article  Google Scholar 

  19. 19

    Rong, J. et al. Oriented cell growth on self-assembled bacteriophage M13 thin films. Chem. Commun. 5185–5187 (2008).

  20. 20

    Smith, G. P. & Petrenko, V. A. Phage display. Chem. Rev. 97, 391–410 (1997).

    CAS  Article  Google Scholar 

  21. 21

    Dogic, Z. & Fraden, S. Smectic phase in a colloidal suspension of semiflexible virus particles. Phys. Rev. Lett. 78, 2417–2420 (1997).

    CAS  Article  Google Scholar 

  22. 22

    Kalinin, S. V. & Bonnell, D. A. Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces. Phys. Rev. B 65, 125408 (2002).

    Article  Google Scholar 

  23. 23

    Chung, W-J. et al. Biomimetic self-templating supramolecular structures. Nature 478, 364–368 (2011).

    CAS  Article  Google Scholar 

  24. 24

    Bhattacharjee, S., Glucksman, M. J. & Makowski, L. Structural polymorphism correlated to surface charge in filamentous bacteriophages. Biophys. J. 61, 725–735 (1992).

    CAS  Article  Google Scholar 

  25. 25

    Marvin, D. A., Welsh, L. C., Symmons, M. F., Scott, W. R. P. & Straus, S. K. Molecular structure of fd (f1, M13) filamentous bacteriophage refined with respect to X-ray fibre diffraction and solid-state NMR data supports specific models of phage assembly at the bacterial membrane. J. Mol. Biol. 355, 294–309 (2006).

    CAS  Article  Google Scholar 

  26. 26

    Yoo, S. Y., Chung, W-J., Kim, T. H., Le, M. & Lee, S-W. Facile patterning of genetically engineered M13 bacteriophage for directional growth of human fibroblast cells. Soft Matter 7, 363–368 (2011).

    CAS  Article  Google Scholar 

  27. 27

    Kim, D. M. et al. Thickness dependence of structural and piezoelectric properties of epitaxial Pb(Zr0.52Ti0.48)O3 films on Si and SrTiO3 substrates. Appl. Phys. Lett. 88, 142904 (2006).

    Article  Google Scholar 

  28. 28

    Durkan, C., Welland, M. E., Chu, D. P. & Migliorato, P. Probing domains at the nanometer scale in piezoelectric thin films. Phys. Rev. B 60, 16198–16204 (1999).

    CAS  Article  Google Scholar 

  29. 29

    Jungk, T., Hoffmann, A. & Soergel, E. Contrast mechanisms for the detection of ferroelectric domains with scanning force microscopy. New J. Phys. 11, 033029 (2009).

    Article  Google Scholar 

  30. 30

    Minary-Jolandan, M. & Yu, M. F. Nanoscale characterization of isolated individual type I collagen fibrils: polarization and piezoelectricity. Nanotechnology 20, 085706 (2009).

    Article  Google Scholar 

  31. 31

    Newman, B. A., Kim, K. G. & Scheinbeim, J. I. Effect of water content on the piezoelectric properties of nylon 11 and nylon 7. J. Mater. Sci. 25, 1779–1783 (1990).

    CAS  Article  Google Scholar 

  32. 32

    Wan, Y., Xie, L., Zhang, X. & Zhong, Z. Time dependence of piezoelectric d33 coefficient of cellular ferroelectret polypropylene film. Appl. Phys. Lett. 98, 122902 (2011).

    Article  Google Scholar 

  33. 33

    Elmessiery, M. A. Physical basis for piezoelectricity of bone-matrix. IEE Proc. A 128, 336–346 (1981).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Jiyoung Chang and Liwei Lin (University of California, Berkeley) for help with device fabrication and signal measurement. This work was supported by the National Science Foundation Center of Integrated Nanomechanical Systems (EEC-0832819) and the Laboratory Directed Research and Development fund from the Lawrence Berkeley National Laboratory.

Author information

Affiliations

Authors

Contributions

B.Y.L. and S.W.L. conceived the experiment. B.Y.L., J.Z., C.Z. and J.M. performed PFM experiments. W.C., J.M. and C.Z. prepared the phage monolayer and multilayer films. Y.S.Y. prepared the genetically engineered phages. B.Y.L. fabricated the energy-generating devices and carried out measurement of the signals. B.Y.L. and E.W. performed the nanoindentation experiments on phage films. E.W. modelled the electrostatic potential of phage coat proteins. B.Y.L., J.Z., J.M., R.R. and S.W.L. analysed the data. B.Y.L., C.Z., E.W. and S.W.L. wrote the manuscript.

Corresponding author

Correspondence to Seung-Wuk Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1411 kb)

Supplementary information

Supplementary movie (MOV 9071 kb)

Supplementary information

Supplementary movie (MOV 4195 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, B., Zhang, J., Zueger, C. et al. Virus-based piezoelectric energy generation. Nature Nanotech 7, 351–356 (2012). https://doi.org/10.1038/nnano.2012.69

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research