Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films

Abstract

Colloidal quantum dots exhibit efficient photoluminescence with widely tunable bandgaps as a result of quantum confinement effects1. Such quantum dots are emerging as an appealing complement to epitaxial semiconductor laser materials, which are ubiquitous and technologically mature, but unable to cover the full visible spectrum (red, green and blue; RGB)2. However, the requirement for high colloidal-quantum-dot packing density, and losses due to non-radiative multiexcitonic Auger recombination, have hindered the development of lasers based on colloidal quantum dots3,4,5,6,7,8,9. Here, we engineer CdSe/ZnCdS core/shell colloidal quantum dots with aromatic ligands, which form densely packed films exhibiting optical gain across the visible spectrum with less than one exciton per colloidal quantum dot on average. This single-exciton gain allows the films to reach the threshold of amplified spontaneous emission at very low optical pump energy densities of 90 µJ cm–2, more than one order of magnitude better than previously reported values9,10,11,12. We leverage the low-threshold gain of these nanocomposite films to produce the first colloidal-quantum-dot vertical-cavity surface-emitting lasers (CQD-VCSEL). Our results represent a significant step towards full-colour single-material lasers.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Structural characteristics of CQDs and their spin-cast closely packed films.
Figure 2: Edge emission in a stripe excitation geometry over a range of pumping levels.
Figure 3: Dynamics of CQD light emission from epitaxial-like thin films under various excitation conditions.
Figure 4: Optically pumped CQD-VCSELs in the red and green.

References

  1. Brus, L. E. Electron–electron and electron–hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403–4409 (1984).

    CAS  Article  Google Scholar 

  2. Risk, W. P., Gosnell, T. R. & Nurmikko, A. V. Compact Blue-Green Lasers (Cambridge Univ. Press, 2003).

  3. Wang, L-W., Califano, M., Zunger, A. & Franceschetti, A. Pseudopotential theory of Auger processes in CdSe quantum dots. Phys. Rev. Lett. 91, 056404 (2003).

    Article  Google Scholar 

  4. Klimov, V. I. et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000).

    CAS  Article  Google Scholar 

  5. Caruge, J. M., Chan, Y., Sundar, V., Eisler, H. J. & Bawendi, M. G. Transient photoluminescence and simultaneous amplified spontaneous emission from multiexciton states in CdSe quantum dots. Phys. Rev. B 70, 085316 (2004).

    Article  Google Scholar 

  6. Malko, A. V. et al. From amplified spontaneous emission to microring lasing using nanocrystal quantum dot solids. Appl. Phys. Lett. 81, 1303–1305 (2002).

    CAS  Article  Google Scholar 

  7. Fisher, B., Caruge, J-M., Chan, Y-T., Halpert, J. & Bawendi, M. G. Multiexciton fluorescence from semiconductor nanocrystals. Chem. Phys. 318, 71–81 (2005).

    CAS  Article  Google Scholar 

  8. Mikhailovsky, A. A., Malko, A. V., Hollingsworth, J. A., Bawendi, M. G. & Klimov, V. I. Multiparticle interactions and stimulated emission in chemically synthesized quantum dots. Appl. Phys. Lett. 80, 2380–2382 (2002).

    CAS  Article  Google Scholar 

  9. Chan, Y., Caruge, J. M., Snee, P. T. & Bawendi, M. G. Multiexcitonic two-state lasing in a CdSe nanocrystal laser. Appl. Phys. Lett. 85, 2460–2462 (2004).

    CAS  Article  Google Scholar 

  10. Cooney, R. R., Sewall, S. L., Sagar, D. M. & Kambhampati, P. Gain control in semiconductor quantum dots via state-resolved optical pumping. Phys. Rev. Lett. 102, 127404, (2009).

    Article  Google Scholar 

  11. Cooney, R. R., Sewall, S. L., Sagar, D. M. & Kambhampati, P. State-resolved manipulations of optical gain in semiconductor quantum dots: size universality, gain tailoring, and surface effects. J. Chem. Phys. 131, 164706 (2009).

    Article  Google Scholar 

  12. Klimov, V. I. et al. Single-exciton optical gain in semiconductor nanocrystals. Nature 447, 441–446 (2007).

    CAS  Article  Google Scholar 

  13. Medintz, I. L., Uyeda, H. T., Goldman, E. R. & Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nature Mater. 4, 435–446 (2005).

    CAS  Article  Google Scholar 

  14. Coe-Sullivan, S., Woo, W-K., Bawendi, M. & Bulovic, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420, 800–803 (2002).

    Article  Google Scholar 

  15. Kim, T-H. et al. Full-colour quantum dot displays fabricated by transfer printing. Nature Photon. 5, 176–182 (2011).

    CAS  Article  Google Scholar 

  16. Sewall, S. L., Cooney, R. R., Anderson, K. E. H., Dias, E. A. & Kambhampati, P. State-to-state exciton dynamics in semiconductor quantum dots. Phys Rev. B 74, 235328 (2006).

    Article  Google Scholar 

  17. Kambhampati, P. Unraveling the structure and dynamics of excitons in semiconductor quantum dots. Acc. Chem. Res. 44, 1–13 (2010).

    Article  Google Scholar 

  18. Sewall, S. L., Cooney, R. R., Dias, E. A., Tyagi, P. & Kambhampati, P. State-resolved observation in real time of the structural dynamics of multiexcitons in semiconductor nanocrystals. Phys. Rev. B 84, 235304 (2011).

    Article  Google Scholar 

  19. Sewall, S. L., Franceschetti, A., Cooney, R. R., Zunger, A. & Kambhampati, P. Direct observation of the structure of band-edge biexcitons in colloidal semiconductor CdSe quantum dots. Phys. Rev. B 80, 081310 (2009).

    Article  Google Scholar 

  20. Klimov, V. I., McGuire, J. A., Schaller, R. D. & Rupasov, V. I. Scaling of multiexciton lifetimes in semiconductor nanocrystals. Phys. Rev. B 77, 195324 (2008).

    Article  Google Scholar 

  21. Zavelani-Rossi, M., Lupo, M. G., Krahne, R., Manna, L. & Lanzani, G. Lasing in self-assembled microcavities of CdSe/CdS core/shell colloidal quantum rods. Nanoscale 2, 931–935 (2010).

    CAS  Article  Google Scholar 

  22. Ivanov, S. A. Light amplification using inverted core/shell nanocrystals: towards lasing in the single-exciton regime. J. Phys. Chem. B 108, 10625–10630 (2004).

    CAS  Article  Google Scholar 

  23. Nanda, J. Absorption cross sections and Auger recombination lifetimes in inverted core/shell nanocrystals: implications for lasing performance. J. Appl. Phys. 99, 034309 (2006).

    Article  Google Scholar 

  24. Kim, S., Fisher, B., Eisler, H-J. & Bawendi, M. Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. J. Am. Chem. Soc. 125, 11466–11467 (2003).

    CAS  Article  Google Scholar 

  25. Hines, M. A. & Guyot-Sionnest, P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 100, 468–471 (1996).

    CAS  Article  Google Scholar 

  26. Goede, O., John, L. & Hennig, D. Compositional disorder-induced broadening for free excitons in IIVI semiconducting mixed crystals. Phys. Status Solidi (b) 89, K183–K186 (1978).

    CAS  Article  Google Scholar 

  27. Saba, M. et al. Exciton–exciton interaction and optical gain in colloidal CdSe/CdS dot/rod nanocrystals. Adv. Mater. 21, 4942–4946 (2009).

    CAS  Article  Google Scholar 

  28. Murray, C. B., Kagan, C. R. & Bawendi, M. G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 270, 1335–1338 (1995).

    CAS  Article  Google Scholar 

  29. Ding, J., Hagerott, M., Ishihara, T., Jeon, H. & Nurmikko, A. V. (Zn,Cd)Se/ZnSe quantum-well lasers: excitonic gain in an inhomogeneously broadened quasi-two-dimensional system. Phys. Rev. B 47, 10528–10542 (1993).

    CAS  Article  Google Scholar 

  30. Lu, W., Zhong, B. & Ma, D. Amplified spontaneous emission and gain from optically pumped films of dye-doped polymers. Appl. Opt. 43, 5074–5078 (2004).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank G. Lei, J. Tang and T. Grimsley for their help in CQD film characterization, K. Roh for subnanosecond pumped ASE, and H. Maris, R. Zia, C. Dodson, D. Pacifici and I. Ozden for fruitful discussions. Research was funded by the Department of Energy (BES office), the Air Force Office for Scientific Research and the National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

C.D. designed the research, performed the experiments and analysed the results. J.L. performed the green CQD-VCSEL and analysed the results. C.B. and J.S.S. synthesized the nanocrystal CQDs. S.C-S. participated in analysis of the results. A.N. contributed to all aspects of the work. C.D., J.L. and A.N. co-wrote the manuscript.

Corresponding author

Correspondence to Arto Nurmikko.

Ethics declarations

Competing interests

C.B., J.S. and S.C-S. are stockholders of QD Vision Inc., which sells light-emitting products comprising quantum dots.

Supplementary information

Supplementary information

Supplementary information (PDF 901 kb)

Supplementary information

Supplementary movie (MOV 4187 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dang, C., Lee, J., Breen, C. et al. Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. Nature Nanotech 7, 335–339 (2012). https://doi.org/10.1038/nnano.2012.61

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.61

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research