Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Remote Joule heating by a carbon nanotube

This article has been updated

Abstract

Minimizing Joule heating remains an important goal in the design of electronic devices1,2. The prevailing model of Joule heating relies on a simple semiclassical picture in which electrons collide with the atoms of a conductor, generating heat locally and only in regions of non-zero current density, and this model has been supported by most experiments. Recently, however, it has been predicted that electric currents in graphene and carbon nanotubes can couple to the vibrational modes of a neighbouring material3,4, heating it remotely5. Here, we use in situ electron thermal microscopy to detect the remote Joule heating of a silicon nitride substrate by a single multiwalled carbon nanotube. At least 84% of the electrical power supplied to the nanotube is dissipated directly into the substrate, rather than in the nanotube itself. Although it has different physical origins, this phenomenon is reminiscent of induction heating or microwave dielectric heating. Such an ability to dissipate waste energy remotely could lead to improved thermal management in electronic devices6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thermal imaging of a multiwalled carbon nanotube under bias.
Figure 2: Remote Joule heating by a multiwalled carbon nanotube.
Figure 3: Quantitative comparison of experiment and simulations.

Similar content being viewed by others

Change history

  • 17 April 2012

    In the version of this Letter originally published online, in the caption of Fig. 3a, the value of β should have been 0.84. This error has been corrected in all versions of the Letter.

References

  1. Pop, E., Sinha, S. & Goodson, K. E. Heat generation and transport in nanometer-scale transistors. Proc. IEEE 94, 1587–1601 (2006).

    Article  CAS  Google Scholar 

  2. Pop, E. Energy dissipation and transport in nanoscale devices. Nano Res. 3, 147–169 (2010).

    Article  CAS  Google Scholar 

  3. Chen, J. H., Jang, C., Xiao, S., Ishigami, M. & Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2 . Nature Nanotech. 3, 206–209 (2008).

    Article  CAS  Google Scholar 

  4. Perebeinos, V., Rotkin, S. V., Petrov, A. G. & Avouris, P. The effects of substrate phonon mode scattering on transport in carbon nanotubes. Nano Lett. 9, 312–316 (2009).

    Article  CAS  Google Scholar 

  5. Rotkin, S. V., Perebeinos, V., Petrov, A. G. & Avouris, P. An essential mechanism of heat dissipation in carbon nanotube electronics. Nano Lett. 9, 1850–1855 (2009).

    Article  CAS  Google Scholar 

  6. Kenny, T. et al. Advanced cooling technologies for microprocessors. Int. J. High Speed Electron. Syst. 16, 301–313 (2006).

    Article  Google Scholar 

  7. Balandin, A. A. et al. Superior thermal conductivity of single layer graphene. Nano Lett. 8, 902–907 (2008).

    Article  CAS  Google Scholar 

  8. Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nature Mater. 10, 569–581 (2011).

    Article  CAS  Google Scholar 

  9. Kim, P., Shi, L., Majumdar, A. & McEuen, P. L. Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87, 215502 (2001).

    Article  CAS  Google Scholar 

  10. Fujii, M. et al. Measuring the thermal conductivity of a single carbon nanotube. Phys. Rev. Lett. 95, 065502 (2005).

    Article  Google Scholar 

  11. Murali, R., Yang, Y., Brenner, K., Beck, T. & Meindl, J. D. Breakdown current density of graphene nanoribbons. Appl. Phys. Lett. 94, 243114 (2009).

    Article  Google Scholar 

  12. Yao, Z., Kane, C. L. & Dekker, C. High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 84, 2941–2944 (2000).

    Article  CAS  Google Scholar 

  13. Wei, B. Q., Vajtai, R. & Ajayan, P. M. Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett. 79, 1172–1174 (2001).

    Article  CAS  Google Scholar 

  14. Huxtable, S. T. et al. Interfacial heat flow in carbon nanotube suspensions. Nature 2, 731–734 (2003).

    Article  CAS  Google Scholar 

  15. Prasher, R. S. et al. Turning carbon nanotubes from exceptional heat conductors into insulators. Phys. Rev. Lett. 102, 105901 (2009).

    Article  Google Scholar 

  16. Baloch, K. H., Voskanian, N. & Cumings, J. Controlling the thermal contact resistance of a carbon nanotube heat spreader. Appl. Phys. Lett. 97, 063105 (2010).

    Article  Google Scholar 

  17. Pettes, M. T. & Shi, L. Thermal and structural characterizations of individual single-, double-, and multi-walled carbon nanotubes. Adv. Funct. Mater. 19, 3918–3925 (2009).

    Article  CAS  Google Scholar 

  18. Brintlinger, T., Qi, Y., Baloch, K. H., Goldhaber-Gordon, D. & Cumings, J. Electron thermal microscopy. Nano Lett. 8, 582–585 (2008).

    Article  CAS  Google Scholar 

  19. Prasher, R. Predicting the thermal resistance of nanosized constrictions. Nano Lett. 5, 2155–2159 (2005).

    Article  CAS  Google Scholar 

  20. Salehi-Khojin, A., Lin, K. Y., Field, C. R. & Masel, R. I. Nonthermal current-stimulated desorption of gases from carbon nanotubes. Science 329, 1327–1330 (2010).

    Article  CAS  Google Scholar 

  21. Bachtold, A. et al. Scanned probe microscopy of electronic transport in carbon nanotubes. Phys. Rev. Lett. 84, 6082–6085 (2000).

    Article  CAS  Google Scholar 

  22. Piyasena, P., Dussault, C., Koutchma, T., Ramaswamy, H. S. & Awuah, G. B. Radio frequency heating of foods: principles, applications and related properties—a review. Crit. Rev. Food Sci. Nutr. 43, 587–606 (2003).

    Article  Google Scholar 

  23. Petrov, A. G. & Rotkin, S. V. Energy relaxation of hot carriers in single-wall carbon nanotubes by surface optical phonons of the substrate. J. Exp. Theor. Phys. Lett. 84, 156–160 (2006).

    Article  CAS  Google Scholar 

  24. Park, J-Y. et al. Electron–phonon scattering in metallic single-walled carbon nanotubes. Nano Lett. 4, 517–520 (2004).

    Article  CAS  Google Scholar 

  25. Chopra, N. G. et al. Fully collapsed carbon nanotubes. Nature 377, 135–138 (1995).

    Article  CAS  Google Scholar 

  26. Begtrup, G. E. et al. Probing nanoscale solids at thermal extremes. Phys. Rev. Lett. 99, 155901 (2007).

    Article  CAS  Google Scholar 

  27. Nihei, M. et al. Electrical properties of carbon nanotube bundles for future via interconnects. Jpn. J. Appl. Phys. 44, 1626–1628 (2005).

    Article  CAS  Google Scholar 

  28. Ma, J. et al. Effects of surfactants on spinning carbon nanotube fibers by an electrophoretic method. Sci. Tech. Adv. Mater. 11, 065005 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (award no. DE-FG02-10ER46742). N.V. is supported by the US Nuclear Regulatory Commission under a Faculty Development Grant (NRC3809950).

Author information

Authors and Affiliations

Authors

Contributions

K.H.B. and J.C. conceived the experiments. K.H.B. fabricated the devices, performed measurements and carried out the simulations. N.V. assisted K.H.B. in lithography and data acquisition. All authors discussed the results. K.H.B and M.B. developed finite-element models. M.B. and N.V. helped point out and address any alternative explanations. K.H.B. and J.C. co-wrote the paper.

Corresponding author

Correspondence to John Cumings.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 872 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baloch, K., Voskanian, N., Bronsgeest, M. et al. Remote Joule heating by a carbon nanotube. Nature Nanotech 7, 316–319 (2012). https://doi.org/10.1038/nnano.2012.39

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.39

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing