Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

On-demand semiconductor single-photon source with near-unity indistinguishability


Single-photon sources based on semiconductor quantum dots offer distinct advantages for quantum information, including a scalable solid-state platform, ultrabrightness and interconnectivity with matter qubits. A key prerequisite for their use in optical quantum computing and solid-state networks is a high level of efficiency and indistinguishability. Pulsed resonance fluorescence has been anticipated as the optimum condition for the deterministic generation of high-quality photons with vanishing effects of dephasing. Here, we generate pulsed single photons on demand from a single, microcavity-embedded quantum dot under s-shell excitation with 3 ps laser pulses. The π pulse-excited resonance-fluorescence photons have less than 0.3% background contribution and a vanishing two-photon emission probability. Non-postselective Hong–Ou–Mandel interference between two successively emitted photons is observed with a visibility of 0.97(2), comparable to trapped atoms and ions. Two single photons are further used to implement a high-fidelity quantum controlled-NOT gate.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Rabi oscillation and antibunching.
Figure 2: Spectra of the pulsed RF.
Figure 3: Non-postselective HOM-type interference between two pulsed RF single photons.
Figure 4: Realization of a quantum CNOT gate using pulsed RF single photons.


  1. 1

    Pan, J-W. et al. Multi-photon entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).

    Article  Google Scholar 

  2. 2

    Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

    CAS  Article  Google Scholar 

  3. 3

    O'Brien, J. L., Furusawa, A. & Vuckovic, J. Photonic quantum technologies. Nature Photon. 3, 687–695 (2009).

    CAS  Article  Google Scholar 

  4. 4

    Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    CAS  Article  Google Scholar 

  5. 5

    Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    CAS  Article  Google Scholar 

  6. 6

    Lounis, B. & Orrit, M. Single-photon sources. Rep. Prog. Phys. 68, 1129–1179 (2005).

    CAS  Article  Google Scholar 

  7. 7

    Shields, A. J. Semiconductor quantum light sources. Nature Photon. 1, 215–223 (2007).

    CAS  Article  Google Scholar 

  8. 8

    Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000).

    CAS  Article  Google Scholar 

  9. 9

    Santori, C., Pelton, M., Solomon, G., Dale, Y. & Yamamoto, Y. Triggered single-photons from a quantum dot. Phys. Rev. Lett. 86, 1502–1505 (2001).

    CAS  Article  Google Scholar 

  10. 10

    Dousse, A. et al. Ultrabright source of entangled photon pairs. Nature 466, 217–220 (2010).

    CAS  Article  Google Scholar 

  11. 11

    Fushman, I. et al. Controlled phase shifts with a single quantum dot. Science 320, 769–772 (2008).

    CAS  Article  Google Scholar 

  12. 12

    Yilmaz, S. T., Fallahi, P. & Imamoglu, A. Quantum-dot-spin single-photon interface. Phys. Rev. Lett. 105, 033601 (2010).

    CAS  Article  Google Scholar 

  13. 13

    Young, A. B. et al. Quantum-dot-induced phase shift in a pillar microcavity. Phys. Rev. A 84, 011803 (2011).

    Article  Google Scholar 

  14. 14

    Yao, W., Liu, R. B. & Sham, L. J. Theory of control of the spin–photon interface for quantum networks. Phys. Rev. Lett. 95, 030504 (2005).

    Article  Google Scholar 

  15. 15

    Santori, C., Fattal, D., Vuckovic, J., Solomon, G. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).

    CAS  Article  Google Scholar 

  16. 16

    Bennett, A. J. et al. Influence of exciton dynamics on the interference of two photons from a microcavity single-photon source. Opt. Express 13, 7772–7778 (2005).

    CAS  Article  Google Scholar 

  17. 17

    Weiler, S. et al. Highly indistinguishable photons from a quantum dot in a microcavity. Phys. Status Solidi B 248, 867–871 (2011).

    CAS  Article  Google Scholar 

  18. 18

    Flagg, E. B. et al. Interference of single photons from two separate semiconductor quantum dots. Phys. Rev. Lett. 104, 137401 (2010).

    Article  Google Scholar 

  19. 19

    Patel, R. B. et al. Two-photon interference of the emission from electrically tunable remote quantum dots. Nature Photon. 4, 632–635 (2010).

    CAS  Article  Google Scholar 

  20. 20

    Santori, C. et al. Single-photon generation with InAs quantum dots. New. J. Phys. 6, 89 (2004).

    Article  Google Scholar 

  21. 21

    Muller, A. et al. Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity. Phys. Rev. Lett. 99, 187402 (2007).

    CAS  Article  Google Scholar 

  22. 22

    Vamivakas, A. N., Zhao, Y., Lu, C. Y. & Atatüre, M. Spin-resolved quantum-dot resonance fluorescence. Nature Phys. 5, 198–202 (2009).

    Article  Google Scholar 

  23. 23

    Flagg, E. B. et al. Resonantly driven coherent oscillations in a solid-state quantum emitter. Nature Phys. 5, 203–207 (2009).

    CAS  Article  Google Scholar 

  24. 24

    Ulhaq, A. et al. Cascaded single-photon emission from the Mollow triplet sidebands of a quantum dot. Nature Photon. 6, 238–242 (2012).

    CAS  Article  Google Scholar 

  25. 25

    Ates, S. et al. Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity. Phys. Rev. Lett. 103, 167402 (2009).

    CAS  Article  Google Scholar 

  26. 26

    Kiraz, A. et al. Indistinguishable photons from a single molecule. Phys. Rev. Lett. 94, 223602 (2005).

    CAS  Article  Google Scholar 

  27. 27

    Patel, R. B. et al. Postselective two-photon interference from a continuous nonclassical stream of photons emitted by a quantum dot. Phys. Rev. Lett. 100, 207405 (2008).

    CAS  Article  Google Scholar 

  28. 28

    Matthiesen, C., Vamivakas, A. N. & Atatüre, M. Subnatural linewidth single photons from a quantum dot. Phys. Rev. Lett. 108, 093602 (2012).

    Article  Google Scholar 

  29. 29

    Nguyen, H. S. et al. Ultra-coherent single photon source. Appl. Phys. Lett. 99, 261904 (2011).

    Article  Google Scholar 

  30. 30

    Barrett, S. D. & Kok, P. Efficient high-fidelity quantum computation using matter qubits and linear optics. Phys. Rev. A 71, 060301 (2005).

    Article  Google Scholar 

  31. 31

    Lindner, N. H. & Rudolph, T. Proposal for pulsed on-demand sources of photonic cluster state strings. Phys. Rev. Lett. 103, 113602 (2009).

    Article  Google Scholar 

  32. 32

    Melet, R. et al. Resonant excitonic emission of a single quantum dot in the Rabi regime. Phys. Rev. B 78, 073301 (2008).

    Article  Google Scholar 

  33. 33

    Zrenner, A. et al. Coherent properties of a two-level system based on a quantum-dot photodiode. Nature 418, 612–614 (2002).

    CAS  Article  Google Scholar 

  34. 34

    Wang, Q. Q. et al. Decoherence processes during optical manipulation of excitonic qubits in semiconductor quantum dots. Phys. Rev. B. 72, 035306 (2005).

    Article  Google Scholar 

  35. 35

    Ramsay, A. J. et al. Phonon-induced Rabi-frequency renormalization of optically driven single InGaAs/GaAs quantum dots. Phys. Rev. Lett. 105, 177402 (2010).

    CAS  Article  Google Scholar 

  36. 36

    Mogilevtsev, D. et al. Driving-dependent damping of Rabi oscillation in two-level semiconductor systems. Phys. Rev. Lett. 100, 017401 (2008).

    CAS  Article  Google Scholar 

  37. 37

    Robinson, H. D. & Goldberg, B. B. Light-induced spectral diffusion in single self-assembled quantum dots. Phys. Rev. B 61, 5086–5089 (2000).

    Article  Google Scholar 

  38. 38

    Berthelot, A. et al. Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot. Nature Phys. 2, 759–764 (2006).

    CAS  Article  Google Scholar 

  39. 39

    Houel, J. et al. Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot. Phys. Rev. Lett. 108, 107401 (2012).

    CAS  Article  Google Scholar 

  40. 40

    Kuhn, A., Hennrich, M. & Rempe, G. Deterministic single-photon source for distributed quantum networking. Phys. Rev. Lett. 89, 067901 (2002).

    Article  Google Scholar 

  41. 41

    McKeever, J. et al. Single photons from one atom trapped in a cavity. Science 303, 1992–1994 (2004).

    CAS  Article  Google Scholar 

  42. 42

    Beugnon, J. et al. Quantum interference between two single photons emitted by independently trapped atoms. Nature 440, 779–782 (2006).

    CAS  Article  Google Scholar 

  43. 43

    Maunz, P. et al. Quantum interference of photon pairs from two remote trapped atomic ions. Nature Phys. 3, 538–541 (2007).

    CAS  Article  Google Scholar 

  44. 44

    O'Brien, J. L., Pryde, G. J., White, A. G., Ralph, T. C. & Branning, D. Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264–267 (2003).

    CAS  Article  Google Scholar 

  45. 45

    Langford, N. K. et al. Demonstration of a simple entangling optical gate and its use in Bell-state analysis. Phys. Rev. Lett. 95, 210504 (2005).

    CAS  Article  Google Scholar 

  46. 46

    Kiesel, N. et al. Linear optics controlled-phase gate made simple. Phys. Rev. Lett. 95, 210505 (2005).

    Article  Google Scholar 

  47. 47

    Okamoto, R. et al. Demonstration of an optical quantum controlled-NOT gate without path interference. Phys. Rev. Lett. 95, 210506 (2005).

    Article  Google Scholar 

  48. 48

    Pooley, M. A. et al. Controlled-NOT gate operating with single photons. Appl. Phys. Lett. 100, 021103 (2012).

    Article  Google Scholar 

  49. 49

    Hofmann, H. F. Complementary classical fidelities as an efficient criterion for the evaluation of experimentally realized quantum operations. Phys. Rev. Lett. 94, 160504 (2005).

    Article  Google Scholar 

  50. 50

    Fattal, D., Diamanti, E., Inoue, K. & Yamamoto, Y. Quantum teleportation with a quantum dot single photon source. Phys. Rev. Lett. 92, 037904 (2004).

    CAS  Article  Google Scholar 

  51. 51

    Scholz, M., Aichlele, T., Ramelow, S. & Benson, O. Deutsch–Jozsa algorithm using triggered single photons from a single quantum dot. Phys. Rev. Lett. 96, 180501 (2006).

    CAS  Article  Google Scholar 

  52. 52

    Moelbjerg, A., Kaer, P., Lorke, M. & Mørk, J. Resonance fluorescence from semiconductor quantum dots: beyond the Mollow triplet. Phys. Rev. Lett. 108, 017401 (2012).

    Article  Google Scholar 

Download references


The authors thank Y. Yu, Z. Xi, J. Bowles, K. Chen, C. Matthiesen, X-L. Wang, L-J. Wang, N. Vamivakas and Y. Zhao for helpful discussions. This work was supported by the National Natural Science Foundation of China, the Chinese Academy of Sciences (CAS) and the National Fundamental Research Program (grant nos 2011CB921300, 2013CB933300), and the State of Bavaria. M.A. acknowledges the CAS visiting professorship. C-Y.L. acknowledges the Anhui Natural Science Foundation and Youth Qianren Program.

Author information




M.A., C-Y.L. and J-W.P. conceived and designed the experiments. C.S., S.H. and M.K. grew and fabricated the sample. Y-M.H., Y.H., Y-J.W., D.W., M.A. and C-Y.L. carried out the optical experiments. Y-M.H., S.H., C-Y.L. and J-W.P. analysed the data. C-Y.L. wrote the manuscript, with input from all authors. S.H., C-Y.L. and J-W.P. guided the project.

Corresponding authors

Correspondence to Sven Höfling or Chao-Yang Lu or Jian-Wei Pan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1260 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

He, YM., He, Y., Wei, YJ. et al. On-demand semiconductor single-photon source with near-unity indistinguishability. Nature Nanotech 8, 213–217 (2013).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research