Article | Published:

On-demand semiconductor single-photon source with near-unity indistinguishability

Nature Nanotechnology volume 8, pages 213217 (2013) | Download Citation

Abstract

Single-photon sources based on semiconductor quantum dots offer distinct advantages for quantum information, including a scalable solid-state platform, ultrabrightness and interconnectivity with matter qubits. A key prerequisite for their use in optical quantum computing and solid-state networks is a high level of efficiency and indistinguishability. Pulsed resonance fluorescence has been anticipated as the optimum condition for the deterministic generation of high-quality photons with vanishing effects of dephasing. Here, we generate pulsed single photons on demand from a single, microcavity-embedded quantum dot under s-shell excitation with 3 ps laser pulses. The π pulse-excited resonance-fluorescence photons have less than 0.3% background contribution and a vanishing two-photon emission probability. Non-postselective Hong–Ou–Mandel interference between two successively emitted photons is observed with a visibility of 0.97(2), comparable to trapped atoms and ions. Two single photons are further used to implement a high-fidelity quantum controlled-NOT gate.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Multi-photon entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).

  2. 2.

    et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

  3. 3.

    , & Photonic quantum technologies. Nature Photon. 3, 687–695 (2009).

  4. 4.

    The quantum internet. Nature 453, 1023–1030 (2008).

  5. 5.

    , & Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

  6. 6.

    & Single-photon sources. Rep. Prog. Phys. 68, 1129–1179 (2005).

  7. 7.

    Semiconductor quantum light sources. Nature Photon. 1, 215–223 (2007).

  8. 8.

    et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000).

  9. 9.

    , , , & Triggered single-photons from a quantum dot. Phys. Rev. Lett. 86, 1502–1505 (2001).

  10. 10.

    et al. Ultrabright source of entangled photon pairs. Nature 466, 217–220 (2010).

  11. 11.

    et al. Controlled phase shifts with a single quantum dot. Science 320, 769–772 (2008).

  12. 12.

    , & Quantum-dot-spin single-photon interface. Phys. Rev. Lett. 105, 033601 (2010).

  13. 13.

    et al. Quantum-dot-induced phase shift in a pillar microcavity. Phys. Rev. A 84, 011803 (2011).

  14. 14.

    , & Theory of control of the spin–photon interface for quantum networks. Phys. Rev. Lett. 95, 030504 (2005).

  15. 15.

    , , , & Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).

  16. 16.

    et al. Influence of exciton dynamics on the interference of two photons from a microcavity single-photon source. Opt. Express 13, 7772–7778 (2005).

  17. 17.

    et al. Highly indistinguishable photons from a quantum dot in a microcavity. Phys. Status Solidi B 248, 867–871 (2011).

  18. 18.

    et al. Interference of single photons from two separate semiconductor quantum dots. Phys. Rev. Lett. 104, 137401 (2010).

  19. 19.

    et al. Two-photon interference of the emission from electrically tunable remote quantum dots. Nature Photon. 4, 632–635 (2010).

  20. 20.

    et al. Single-photon generation with InAs quantum dots. New. J. Phys. 6, 89 (2004).

  21. 21.

    et al. Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity. Phys. Rev. Lett. 99, 187402 (2007).

  22. 22.

    , , & Spin-resolved quantum-dot resonance fluorescence. Nature Phys. 5, 198–202 (2009).

  23. 23.

    et al. Resonantly driven coherent oscillations in a solid-state quantum emitter. Nature Phys. 5, 203–207 (2009).

  24. 24.

    et al. Cascaded single-photon emission from the Mollow triplet sidebands of a quantum dot. Nature Photon. 6, 238–242 (2012).

  25. 25.

    et al. Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity. Phys. Rev. Lett. 103, 167402 (2009).

  26. 26.

    et al. Indistinguishable photons from a single molecule. Phys. Rev. Lett. 94, 223602 (2005).

  27. 27.

    et al. Postselective two-photon interference from a continuous nonclassical stream of photons emitted by a quantum dot. Phys. Rev. Lett. 100, 207405 (2008).

  28. 28.

    , & Subnatural linewidth single photons from a quantum dot. Phys. Rev. Lett. 108, 093602 (2012).

  29. 29.

    et al. Ultra-coherent single photon source. Appl. Phys. Lett. 99, 261904 (2011).

  30. 30.

    & Efficient high-fidelity quantum computation using matter qubits and linear optics. Phys. Rev. A 71, 060301 (2005).

  31. 31.

    & Proposal for pulsed on-demand sources of photonic cluster state strings. Phys. Rev. Lett. 103, 113602 (2009).

  32. 32.

    et al. Resonant excitonic emission of a single quantum dot in the Rabi regime. Phys. Rev. B 78, 073301 (2008).

  33. 33.

    et al. Coherent properties of a two-level system based on a quantum-dot photodiode. Nature 418, 612–614 (2002).

  34. 34.

    et al. Decoherence processes during optical manipulation of excitonic qubits in semiconductor quantum dots. Phys. Rev. B. 72, 035306 (2005).

  35. 35.

    et al. Phonon-induced Rabi-frequency renormalization of optically driven single InGaAs/GaAs quantum dots. Phys. Rev. Lett. 105, 177402 (2010).

  36. 36.

    et al. Driving-dependent damping of Rabi oscillation in two-level semiconductor systems. Phys. Rev. Lett. 100, 017401 (2008).

  37. 37.

    & Light-induced spectral diffusion in single self-assembled quantum dots. Phys. Rev. B 61, 5086–5089 (2000).

  38. 38.

    et al. Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot. Nature Phys. 2, 759–764 (2006).

  39. 39.

    et al. Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot. Phys. Rev. Lett. 108, 107401 (2012).

  40. 40.

    , & Deterministic single-photon source for distributed quantum networking. Phys. Rev. Lett. 89, 067901 (2002).

  41. 41.

    et al. Single photons from one atom trapped in a cavity. Science 303, 1992–1994 (2004).

  42. 42.

    et al. Quantum interference between two single photons emitted by independently trapped atoms. Nature 440, 779–782 (2006).

  43. 43.

    et al. Quantum interference of photon pairs from two remote trapped atomic ions. Nature Phys. 3, 538–541 (2007).

  44. 44.

    , , , & Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264–267 (2003).

  45. 45.

    et al. Demonstration of a simple entangling optical gate and its use in Bell-state analysis. Phys. Rev. Lett. 95, 210504 (2005).

  46. 46.

    et al. Linear optics controlled-phase gate made simple. Phys. Rev. Lett. 95, 210505 (2005).

  47. 47.

    et al. Demonstration of an optical quantum controlled-NOT gate without path interference. Phys. Rev. Lett. 95, 210506 (2005).

  48. 48.

    et al. Controlled-NOT gate operating with single photons. Appl. Phys. Lett. 100, 021103 (2012).

  49. 49.

    Complementary classical fidelities as an efficient criterion for the evaluation of experimentally realized quantum operations. Phys. Rev. Lett. 94, 160504 (2005).

  50. 50.

    , , & Quantum teleportation with a quantum dot single photon source. Phys. Rev. Lett. 92, 037904 (2004).

  51. 51.

    , , & Deutsch–Jozsa algorithm using triggered single photons from a single quantum dot. Phys. Rev. Lett. 96, 180501 (2006).

  52. 52.

    , , & Resonance fluorescence from semiconductor quantum dots: beyond the Mollow triplet. Phys. Rev. Lett. 108, 017401 (2012).

Download references

Acknowledgements

The authors thank Y. Yu, Z. Xi, J. Bowles, K. Chen, C. Matthiesen, X-L. Wang, L-J. Wang, N. Vamivakas and Y. Zhao for helpful discussions. This work was supported by the National Natural Science Foundation of China, the Chinese Academy of Sciences (CAS) and the National Fundamental Research Program (grant nos 2011CB921300, 2013CB933300), and the State of Bavaria. M.A. acknowledges the CAS visiting professorship. C-Y.L. acknowledges the Anhui Natural Science Foundation and Youth Qianren Program.

Author information

Affiliations

  1. Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China

    • Yu-Ming He
    • , Yu He
    • , Yu-Jia Wei
    • , Dian Wu
    • , Mete Atatüre
    • , Chao-Yang Lu
    •  & Jian-Wei Pan
  2. Cavendish Laboratory, JJ Thomson Avenue, University of Cambridge, CB3 0HE Cambridge, UK

    • Mete Atatüre
    •  & Chao-Yang Lu
  3. Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen-Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany

    • Christian Schneider
    • , Sven Höfling
    •  & Martin Kamp

Authors

  1. Search for Yu-Ming He in:

  2. Search for Yu He in:

  3. Search for Yu-Jia Wei in:

  4. Search for Dian Wu in:

  5. Search for Mete Atatüre in:

  6. Search for Christian Schneider in:

  7. Search for Sven Höfling in:

  8. Search for Martin Kamp in:

  9. Search for Chao-Yang Lu in:

  10. Search for Jian-Wei Pan in:

Contributions

M.A., C-Y.L. and J-W.P. conceived and designed the experiments. C.S., S.H. and M.K. grew and fabricated the sample. Y-M.H., Y.H., Y-J.W., D.W., M.A. and C-Y.L. carried out the optical experiments. Y-M.H., S.H., C-Y.L. and J-W.P. analysed the data. C-Y.L. wrote the manuscript, with input from all authors. S.H., C-Y.L. and J-W.P. guided the project.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Sven Höfling or Chao-Yang Lu or Jian-Wei Pan.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nnano.2012.262

Further reading