Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Three-dimensional optical manipulation of a single electron spin

Abstract

Nitrogen vacancy (NV) centres in diamond are promising elemental blocks for quantum optics1,2, spin-based quantum information processing3,4 and high-resolution sensing5,6,7,8,9,10,11. However, fully exploiting the capabilities of these NV centres requires suitable strategies to accurately manipulate them. Here, we use optical tweezers12 as a tool to achieve deterministic trapping and three-dimensional spatial manipulation of individual nanodiamonds hosting a single NV spin. Remarkably, we find that the NV axis is nearly fixed inside the trap and can be controlled in situ by adjusting the polarization of the trapping light. By combining this unique spatial and angular control with coherent manipulation of the NV spin and fluorescence lifetime measurements near an integrated photonic system, we demonstrate individual optically trapped NV centres as a novel route for both three-dimensional vectorial magnetometry and sensing of the local density of optical states.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Three-dimensional optical trapping and manipulation of a single electron spin.
Figure 2: Tracking and trapping of a single nanocrystal diamond with a single NV centre.
Figure 3: Vectorial magnetometry and orientation control with an optically trapped single spin.
Figure 4: LDOS mapping across a TiO2 waveguide.

References

  1. Togan, E. et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010).

    CAS  Article  Google Scholar 

  2. Babinec, T. M. et al. A diamond nanowire single-photon source. Nature Nanotech. 5, 195–199 (2010).

    CAS  Article  Google Scholar 

  3. Fuchs, G. D., Burkard, G., Klimov, P. V. & Awschalom, D. D. A quantum memory intrinsic to single nitrogen-vacancy centres in diamond. Nature Phys. 7, 789–793 (2011).

    Article  Google Scholar 

  4. Neumann, P. et al. Quantum register based on coupled electron spins in a room-temperature solid. Nature Phys. 6, 249–253 (2010).

    CAS  Article  Google Scholar 

  5. Degen, C. L. Scanning magnetic field microscope with a diamond single-spin sensor. Appl. Phys. Lett. 92, 243111 (2008).

    Article  Google Scholar 

  6. Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

    CAS  Article  Google Scholar 

  7. Maze, J. R. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008).

    CAS  Article  Google Scholar 

  8. Taylor, J. M. High-sensitivity diamond magnetometer with nanoscale resolution. Nature Phys. 4, 810–816 (2008).

    CAS  Article  Google Scholar 

  9. Rondin, L. et al. Nanoscale magnetic field mapping with a single spin scanning probe magnetometer. Appl. Phys. Lett. 100, 153118 (2012).

    Article  Google Scholar 

  10. Maletinsky, P. et al. A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nature Nanotech. 7, 320–324 (2012).

    CAS  Article  Google Scholar 

  11. Dolde, F. et al. Electric field sensing using single diamond spins. Nature Phys. 7, 459–463 (2011).

    CAS  Article  Google Scholar 

  12. Dholakia, K. & Cizmar, T. Shaping the future of manipulation. Nature Photon. 5, 335–342 (2011).

    CAS  Article  Google Scholar 

  13. Meijer, J. et al. Generation of single color centers by focused nitrogen implantation. Appl. Phys. Lett. 87, 261909 (2005).

    Article  Google Scholar 

  14. Rabeau, J. R. et al. Implantation of labelled single nitrogen vacancy centers in diamond using 15N. Appl. Phys. Lett. 88, 023113 (2006).

    Article  Google Scholar 

  15. Aharonovich, I., Greentree, A. D. & Prawer, S. Diamond photonics. Nature Photon. 5, 397–405 (2011).

    CAS  Article  Google Scholar 

  16. Schröder, T., Schell, A. W., Kewes, G., Aichele, T. & Benson, O. Fiber-integrated diamond-based single photon source. Nano Lett. 11, 198–202 (2010).

    Article  Google Scholar 

  17. Schröder, T. et al. A nanodiamond-tapered fiber system with high single-mode coupling efficiency. Opt. Express 20, 10490–10497 (2012).

    Article  Google Scholar 

  18. Kolesov, R. et al. Wave–particle duality of single surface plasmon polaritons. Nature Phys. 5, 470–474 (2009).

    CAS  Article  Google Scholar 

  19. Schell, A. W. et al. Single defect centers in diamond nanocrystals as quantum probes for plasmonic nanostructures. Opt. Express 19, 7914–7920 (2011).

    CAS  Article  Google Scholar 

  20. Schietinger, S., Barth, M., Aichele, T. & Benson, O. Plasmon-enhanced single photon emission from a nanoassembled metaldiamond hybrid structure at room temperature. Nano Lett. 9, 1694–1698 (2009).

    CAS  Article  Google Scholar 

  21. Cuche, A. et al. Near-field optical microscopy with a nanodiamond-based single-photon tip. Opt. Express 17, 19969–19980 (2009).

    CAS  Article  Google Scholar 

  22. Cuche, A., Mollet, O., Drezet, A. & Huant, S. Deterministic quantum plasmonics. Nano Lett. 10, 4566–4570 (2010).

    CAS  Article  Google Scholar 

  23. Huck, A., Kumar, S., Shakoor, A. & Andersen U. L. Controlled coupling of a single nitrogen-vacancy center to a silver nanowire. Phys. Rev. Lett. 106, 096801 (2011).

    Article  Google Scholar 

  24. Marty, R., Arbouet, A., Paillard, V., Girard, C. & Colas des Francs, G. Photon antibunching in the optical near field. Phys. Rev. B 82, 081403 (2010).

    Article  Google Scholar 

  25. Van der Sar, T. et al. Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center. Appl. Phys. Lett. 94, 173104 (2009).

    Article  Google Scholar 

  26. Horowitz, V. R., Alemán, B. J., Christle, D. J., Cleland, A. N. & Awschalom, D. D. Electron spin resonance of nitrogen-vacancy centers in optically trapped nanodiamonds. Proc. Natl Acad. Sci. USA 109, 13493–13497 (2012).

    CAS  Article  Google Scholar 

  27. Gruber, A. et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276, 2012–2014 (1997).

    CAS  Article  Google Scholar 

  28. Manson, N. B., Harrison, J. P. & Sellars, M. J. Nitrogen-vacancy center in diamond: model of the electronic structure and associated dynamics. Phys. Rev. B 74, 104303 (2006).

    Article  Google Scholar 

  29. Neuman, K. C. & Block, S. M. Optical trapping. Rev. Sci. Instrum. 75, 2787–2809 (2004).

    CAS  Article  Google Scholar 

  30. Galajda, P. & Ormos, P. Orientation of flat particles in optical tweezers by linearly polarized light. Opt. Express 11, 446–451 (2003).

    Article  Google Scholar 

  31. Novotny, L., Beversluis, M. R., Youngworth, K. S. & Brown, T. G. Longitudinal field modes probed by single molecules. Phys. Rev. Lett. 86, 5251–5254 (2001).

    CAS  Article  Google Scholar 

  32. Dreau, A. et al. Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011).

    Article  Google Scholar 

  33. Colas Des Francs, G. et al. Single molecules probe local density of modes (LDOS) around photonic nanostructures. J. Microsc. 229, 210–216 (2008).

    CAS  Article  Google Scholar 

  34. García de Abajo, F. J. & Kociak, M. Probing the photonic local density of states with electron energy loss spectroscopy. Phys. Rev. Lett. 100, 106804 (2008).

    Article  Google Scholar 

  35. Mochalin, V. N., Shenderova, O., Ho, D. & Gogotsi, Y. The properties and applications of nanodiamonds. Nature Nanotech 7, 11–23 (2012).

    CAS  Article  Google Scholar 

  36. McGuinness, L. P. et al. Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nature Nanotech. 6, 358–363 (2011).

    CAS  Article  Google Scholar 

  37. Divincenzo, D. P. The Physical Implementation of Quantum Computation: Scalable Quantum Computers (Wiley, 2005).

    Google Scholar 

  38. Juan, M. L., Righini, M. & Quidant, R. Plasmon nano-optical tweezers. Nature Photon. 5, 349–356 (2011).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Spanish Ministry of Sciences (grants FIS2010–14834 and CSD2007–046-NanoLight.es), the European Community's Seventh Framework Program under grant ERC-Plasmolight (no. 259196) and Fundació privada CELLEX. The authors thank T. Gaebel and A. Edmonds for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

M.G., M.L.J. and R.Q. conceived the experiment. M.G. performed the experiments. J.M.S. and L.J.B. provided the treated nanodiamonds. J.R. fabricated the nanostructures, J.G.A. provided theoretical support and F.K. assisted in implementing the ESR control. All authors discussed the results and commented on the manuscript. M.G., J.G.A., F.K. and R.Q. wrote the paper.

Corresponding author

Correspondence to Romain Quidant.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 884 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Geiselmann, M., Juan, M., Renger, J. et al. Three-dimensional optical manipulation of a single electron spin. Nature Nanotech 8, 175–179 (2013). https://doi.org/10.1038/nnano.2012.259

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.259

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research