Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes


Graphene and hexagonal boron nitride (h-BN) have similar crystal structures with a lattice constant difference of only 2%. However, graphene is a zero-bandgap semiconductor with remarkably high carrier mobility at room temperature1,2,3, whereas an atomically thin layer of h-BN4,5,6,7,8,9 is a dielectric with a wide bandgap of 5.9 eV. Accordingly, if precise two-dimensional domains of graphene and h-BN can be seamlessly stitched together, hybrid atomic layers with interesting electronic applications could be created10. Here, we show that planar graphene/h-BN heterostructures can be formed by growing graphene in lithographically patterned h-BN atomic layers. Our approach can create periodic arrangements of domains with size ranging from tens of nanometres to millimetres. The resulting graphene/h-BN atomic layers can be peeled off the growth substrate and transferred to various platforms including flexible substrates. We also show that the technique can be used to fabricate two-dimensional devices, such as a split closed-loop resonator that works as a bandpass filter.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Creation of millimetre-sized graphene/h-BN in-plane heterostructures.
Figure 2: Creation of micro- to nanoscale patterned graphene/h-BN in-plane heterostructures.
Figure 3: Raman, AFM and TEM characterization of graphene/h-BN interfaces.
Figure 4: Graphene/h-BN FET and split closed-loop resonator.


  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  Article  Google Scholar 

  2. Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    CAS  Article  Google Scholar 

  3. Chen, J-H., Jang, C., Xiao, S., Ishigami, M. & Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2 . Nature Nanotech. 3, 206–209 (2008).

    CAS  Article  Google Scholar 

  4. Corso, M. et al. Boron nitride nanomesh. Science 303, 217–220 (2004).

    CAS  Article  Google Scholar 

  5. Morscher, M., Corso, M., Greber, T. & Osterwalder, J. Formation of single layer h-BN on Pd(111). Surf. Sci. 600, 3280–3284 (2006).

    CAS  Article  Google Scholar 

  6. Goriachko, A. et al. Self-assembly of a hexagonal boron nitride nanomesh on Ru(0001). Langmuir 23, 2928–2931 (2007).

    CAS  Article  Google Scholar 

  7. Kester, D. J., Ailey, K. S., Davis, R. F. & More, K. L. Phase evolution in boron-nitride thin-films. J. Mater. Res. 8, 1213–1216 (1993).

    CAS  Article  Google Scholar 

  8. Nagashima, A., Tejima, N., Gamou, Y., Kawai, T. & Oshima, C. Electronic dispersion relations of monolayer hexagonal boron nitride formed on the Ni(111) surface. Phys. Rev. B 51, 4606 (1995).

    CAS  Article  Google Scholar 

  9. Rokuta, E. et al. Phonon dispersion of an epitaxial monolayer film of hexagonal boron nitride on Ni(111). Phys. Rev. Lett. 79, 4609 (1997).

    CAS  Article  Google Scholar 

  10. Levendorf, M. P. et al. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 488, 627–632 (2012).

    CAS  Article  Google Scholar 

  11. Wang, H. et al. BN/graphene/BN transistors for RF applications. IEEE Electron. Device Lett. 32, 1209–1211 (2011).

    CAS  Article  Google Scholar 

  12. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010).

    CAS  Google Scholar 

  13. Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012).

    CAS  Article  Google Scholar 

  14. Bokdam, M., Khomyakov, P. A., Brocks, G., Zhong, Z. & Kelly, P. J. Electrostatic doping of graphene through ultrathin hexagonal boron nitride films. Nano Lett. 11, 4631–4635 (2011).

    CAS  Article  Google Scholar 

  15. Decker, R. G. et al. Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy. Nano Lett. 11, 2291–2295 (2011).

    CAS  Article  Google Scholar 

  16. Liu, Z. et al. Direct growth of graphene/hexagonal boron nitride stacked layers. Nano Lett. 11, 2032–2037 (2011).

    CAS  Article  Google Scholar 

  17. Ci, L. et al. Atomic layers of hybridized boron nitride and graphene domains. Nature Mater. 9, 430–435 (2010).

    CAS  Article  Google Scholar 

  18. Song, L. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10, 3209–3215 (2010).

    CAS  Article  Google Scholar 

  19. Schwierz, F. Graphene transistors. Nature Nanotech. 5, 487–496 (2010).

    CAS  Article  Google Scholar 

  20. Lee, C. et al. Frictional characteristics of atomically thin sheets. Science 328, 76–80 (2010).

    CAS  Article  Google Scholar 

  21. Choon Sik, C., Lee, J. W. & Jaeheung, K. Dual- and triple-mode branch-line ring resonators and harmonic suppressed half-ring resonators. IEEE Trans. Microwave Theory Tech. 54, 3968–3974 (2006).

    Article  Google Scholar 

  22. Grieg, D. D. & Engelmann, H. F. Microstrip—a new transmission technique for the kilomegacycle range. Proc. IRE 40, 1644–1650 (1952).

    Article  Google Scholar 

  23. Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C. & Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000).

    CAS  Article  Google Scholar 

  24. Han, S-J. et al. High-frequency graphene voltage amplifier. Nano Lett. 11, 3690–3693 (2011).

    CAS  Article  Google Scholar 

  25. Han, W., Nezich, D., Jing, K. & Palacios, T. Graphene frequency multipliers. IEEE Electron. Device Lett. 30, 547–549 (2009).

    Article  Google Scholar 

  26. Qiao, Z., Jung, J., Niu, Q. & MacDonald, A. H. Electronic highways in bilayer graphene. Nano Lett. 11, 3453–3459 (2011).

    CAS  Article  Google Scholar 

  27. Krivanek, O. L. et al. An electron microscope for the aberration-corrected era. Ultramicroscopy 108, 179–195 (2008).

    CAS  Article  Google Scholar 

Download references


This work was supported by the US Army Research Office (MURI grant W911NF-11-1-0362), the US Office of Naval Research (MURI grant N000014-09-1-1066), the Nanoelectronics Research Corporation (contract S201006), US–Japan Cooperative Research & Education in Terahertz (grant OISE-0968405), the Welch Foundation (grant C-1716), the National Science Foundation (NSF, grant DMR-0928297, NSF grant DMR-0938330 to W.Z.), and Oak Ridge National Laboratory's Shared Research Equipment (ShaRE) User Program (J.C.I.), which is sponsored by the Office of Basic Energy Sciences, US Department of Energy. The authors would like to thank G. You for help with sample preparation and AFM measurements.

Author information

Authors and Affiliations



Z.L. designed and carried out most of the experiments (SEM, TEM, Raman, XPS) and analysed the data. L.M. worked on the CVD growth of graphene. Y.G. and K.P.H. conducted the CVD growth of h-BN. G.S. and S.D.L. fabricated graphene/h-BN patterns by photolithography and FIB. W.Z. carried out STEM experiments. J.Z. and J.Y. performed AFM measurements. X.Y. carried out high-frequency measurements of the graphene/h-BN resonator. R.V., J.L. and P.M.A were responsible for project planning. Z.L., K.P.H., W.Z., J-C.I., J.L. and P.M.A. co-wrote the paper. All authors discussed the results.

Corresponding authors

Correspondence to Jun Lou or Pulickel M. Ajayan.

Supplementary information

Supplementary information

Supplementary information (PDF 11479 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, Z., Ma, L., Shi, G. et al. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nature Nanotech 8, 119–124 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research