Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stochastic sensing of proteins with receptor-modified solid-state nanopores

Abstract

Solid-state nanopores are capable of the label-free analysis of single molecules. It is possible to add biochemical selectivity by anchoring a molecular receptor inside the nanopore, but it is difficult to maintain single-molecule sensitivity in these modified nanopores. Here, we show that metallized silicon nitride nanopores chemically modified with nitrilotriacetic acid receptors can be used for the stochastic sensing of proteins. The reversible binding and unbinding of the proteins to the receptors is observed in real time, and the interaction parameters are statistically analysed from single-molecule binding events. To demonstrate the versatile nature of this approach, we detect His-tagged proteins and discriminate between the subclasses of rodent IgG antibodies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical modification of metallized solid-state nanopores and stochastic sensing of proteins.
Figure 2: Single-molecule binding kinetics of His6-tagged protein A/G/L to a bisNTA modified nanopore.
Figure 3: Quantitation of dissociation rates and influence of receptor position.
Figure 4: Influence of receptor multivalence on binding stability.
Figure 5: Antibody-selective nanopore.

Similar content being viewed by others

References

  1. Howorka, S. & Siwy, Z. Nanopore analytics: sensing of single molecules. Chem. Soc. Rev. 38, 2360–2384 (2009).

    Article  CAS  Google Scholar 

  2. Chen, P. et al. Atomic layer deposition to fine-tune the surface properties and diameters of fabricated nanopores. Nano Lett. 4, 1333–1337 (2004).

    Article  CAS  Google Scholar 

  3. Wanunu, M. et al. Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nature Nanotech. 5, 807–814 (2011).

    Article  Google Scholar 

  4. Robertson, J. W. F. et al. Single-molecule mass spectrometry in solution using a solitary nanopore. Proc. Natl Acad. Sci. USA 104, 8207–8211 (2007).

    Article  CAS  Google Scholar 

  5. Fologea, D., Ledden, B., McNabb, D. S. & Li, J. L. Electrical characterization of protein molecules by a solid-state nanopore. Appl. Phys. Lett. 91, 053901 (2007).

    Article  Google Scholar 

  6. Han, A. et al. Label-free detection of single protein molecules and protein–protein interactions using synthetic nanopores. Anal. Chem. 80, 4651–4658 (2008).

    Article  CAS  Google Scholar 

  7. Talaga, D. S. & Li, J. L. Single-molecule protein unfolding in solid state nanopores. J. Am. Chem. Soc. 131, 9287–9297 (2009).

    Article  CAS  Google Scholar 

  8. Uram, J. D., Ke, K., Hunt, A. J. & Mayer, M. Submicrometer pore-based characterization and quantification of antibody–virus interactions. Small 2, 967–972 (2006).

    Article  CAS  Google Scholar 

  9. Smeets, R. M. M., Kowalczyk, S. W., Hall, A. R., Dekker, N. H. & Dekker, C. Translocation of RecA-coated double-stranded DNA through solid-state nanopores. Nano Lett. 9, 3089–3095 (2009).

    Article  CAS  Google Scholar 

  10. Van Dorp, S., Keyser, U. F., Dekker, N. H., Dekker, C. & Lemay, S. G. Origin of the electrophoretic force on DNA in solid-state nanopores. Nature Phys. 5, 347–351 (2009).

    Article  CAS  Google Scholar 

  11. Firnkes, M., Pedone, D., Knezevic, J., Doblinger, M. & Rant, U. Electrically facilitated translocations of proteins through silicon nitride nanopores: conjoint and competitive action of diffusion, electrophoresis, and electroosmosis. Nano Lett. 10, 2162–2167 (2010).

    Article  CAS  Google Scholar 

  12. Movileanu, L. Interrogating single proteins through nanopores: challenges and opportunities. Trends Biotechnol. 27, 333–341 (2009).

    Article  CAS  Google Scholar 

  13. Keyser, U. F. Controlling molecular transport through nanopores. J. R. Soc. Interface 8, 1369–1378 (2011).

    Article  CAS  Google Scholar 

  14. Iqbal, S. M., Akin, D. & Bashir, R. Solid-state nanopore channels with DNA selectivity. Nature Nanotech. 2, 243–248 (2007).

    Article  CAS  Google Scholar 

  15. Bayley, H. & Cremer, P. S. Stochastic sensors inspired by biology. Nature 413, 226–230 (2001).

    Article  CAS  Google Scholar 

  16. Liu, A. H., Zhao, Q. T. & Guan, X. Y. Stochastic nanopore sensors for the detection of terrorist agents: current status and challenges. Anal. Chim. Acta 675, 106–115 (2010).

    Article  CAS  Google Scholar 

  17. Braha, O. et al. Simultaneous stochastic sensing of divalent metal ions. Nature Biotechnol. 18, 1005–1007 (2000).

    Article  CAS  Google Scholar 

  18. Gu, L. Q., Braha, O., Conlan, S., Cheley, S. & Bayley, H. Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature 398, 686–690 (1999).

    Article  CAS  Google Scholar 

  19. Howorka, S., Cheley, S. & Bayley, H. Sequence-specific detection of individual DNA strands using engineered nanopores. Nature Biotechnol. 19, 636–639 (2001).

    Article  CAS  Google Scholar 

  20. Movileanu, L., Howorka, S., Braha, O. & Bayley, H. Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore. Nature Biotechnol. 18, 1091–1095 (2000).

    Article  CAS  Google Scholar 

  21. Dekker, C. Solid-state nanopores. Nature Nanotech. 2, 209–215 (2007).

    Article  CAS  Google Scholar 

  22. Wanunu, M. & Meller, A. Chemically modified solid-state nanopores. Nano Lett. 7, 1580–1585 (2007).

    Article  CAS  Google Scholar 

  23. Sexton, L. T. et al. Resistive-pulse studies of proteins and protein/antibody complexes using a conical nanotube sensor. J. Am. Chem. Soc. 129, 13144–13152 (2007).

    Article  CAS  Google Scholar 

  24. Yusko, E. C. et al. Controlling protein translocation through nanopores with bio-inspired fluid walls. Nature Nanotech. 6, 253–260 (2011).

    Article  CAS  Google Scholar 

  25. Kowalczyk, S. W. et al. Single-molecule transport across an individual biomimetic nuclear pore complex. Nature Nanotech. 6, 433–438 (2011).

    Article  CAS  Google Scholar 

  26. Siwy, Z. et al. Protein biosensors based on biofunctionalized conical gold nanotubes. J. Am. Chem. Soc. 127, 5000–5001 (2005).

    Article  CAS  Google Scholar 

  27. Ali, M. et al. Biosensing and supramolecular bioconjugation in single conical polymer nanochannels. Facile incorporation of biorecognition elements into nanoconfined geometries. J. Am. Chem. Soc. 130, 16351–16357 (2008).

    Article  CAS  Google Scholar 

  28. Vlassiouk, I., Kozel, T. R. & Siwy, Z. S. Biosensing with nanofluidic diodes. J. Am. Chem. Soc. 131, 8211–8220 (2009).

    Article  CAS  Google Scholar 

  29. Ding, S., Gao, C. & Gu, L-Q. Capturing single molecules of immunoglobulin and ricin with an aptamer-encoded glass nanopore. Anal. Chem. 81, 6649–6655 (2009).

    Article  CAS  Google Scholar 

  30. Actis, P., Jejelowo, O. & Pourmand, N. Ultrasensitive mycotoxin detection by STING sensors. Biosens. Bioelectron. 26, 333–337 (2010).

    Article  CAS  Google Scholar 

  31. Han, C. P. et al. Enantioselective recognition in biomimetic single artificial nanochannels. J. Am. Chem. Soc. 133, 7644–7647 (2011).

    Article  CAS  Google Scholar 

  32. Wei, R. S., Pedone, D., Zurner, A., Doblinger, M. & Rant, U. Fabrication of metallized nanopores in silicon nitride membranes for single-molecule sensing. Small 6, 1406–1414 (2010).

    Article  CAS  Google Scholar 

  33. Sexton, L. T. et al. An adsorption-based model for pulse duration in resistive-pulse protein sensing. J. Am. Chem. Soc. 132, 6755–6763 (2010).

    Article  CAS  Google Scholar 

  34. Tinazli, A. et al. High-affinity chelator thiols for switchable and oriented immobilization of histidine-tagged proteins: a generic platform for protein chip technologies. Chem. Eur. J. 11, 5249–5259 (2005).

    Article  CAS  Google Scholar 

  35. Raiber, K., Terfort, A., Benndorf, C., Krings, N. & Strehblow, H-H. Removal of self-assembled monolayers of alkanethiolates on gold by plasma cleaning. Surf. Sci. 595, 56–63 (2005).

    Article  CAS  Google Scholar 

  36. Prime, K. L. & Whitesides, G. M. Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide)—a model system using self-assembled monolayers. J. Am. Chem. Soc. 115, 10714–10721 (1993).

    Article  CAS  Google Scholar 

  37. Sigal, G. B., Bamdad, C., Barberis, A., Strominger, J. & Whitesides, G. M. A self-assembled monolayer for the binding and study of histidine tagged proteins by surface plasmon resonance. Anal. Chem. 68, 490–497 (1996).

    Article  CAS  Google Scholar 

  38. Zevenbergen, M. A. G., Singh, P. S., Goluch, E. D., Wolfrum, B. L. & Lemay, S. G. Stochastic sensing of single molecules in a nanofluidic electrochemical device. Nano Lett. 11, 2881–2886 (2011).

    Article  CAS  Google Scholar 

  39. Lata, S. & Piehler, J. Stable and functional immobilization of histidine-tagged proteins via multivalent chelator headgroups on a molecular poly(ethylene glycol) brush. Anal. Chem. 77, 1096–1105 (2005).

    Article  CAS  Google Scholar 

  40. Hill, A. V. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J. Physiol. 40, iv–vii (1910).

    Google Scholar 

  41. Colquhoun, D. Binding, gating, affinity and efficacy: the interpretation of structure–activity relationships for agonists and of the effects of mutating receptors. Br. J. Pharmacol. 125, 924–947 (1998).

    Article  CAS  Google Scholar 

  42. Woodhull, A. M. Ionic blockage of sodium channels in nerve. J. Gen. Physiol. 61, 687–708 (1973).

    Article  CAS  Google Scholar 

  43. Gu, L. Q. & Bayley, H. Interaction of the noncovalent molecular adapter, β-cyclodextrin, with the staphylococcal α-hemolysin pore. Biophys. J. 79, 1967–1975 (2000).

    Article  CAS  Google Scholar 

  44. Mathe, J., Visram, H., Viasnoff, V., Rabin, Y. & Meller, A. Nanopore unzipping of individual DNA hairpin molecules. Biophys. J. 87, 3205–3212 (2004).

    Article  CAS  Google Scholar 

  45. Strunz, T., Oroszlan, K., Schumakovitch, I., Guntherodt, H. J. & Hegner, M. Model energy landscapes and the force-induced dissociation of ligand–receptor bonds. Biophys. J. 79, 1206–1212 (2000).

    Article  CAS  Google Scholar 

  46. Valiokas, R. et al. Self-assembled monolayers containing terminal mono-, bis-, and tris-nitrilotriacetic acid groups: characterization and application. Langmuir 24, 4959–4967 (2008).

    Article  CAS  Google Scholar 

  47. Pedone, D., Firnkes, M. & Rant, U. Data analysis of translocation events in nanopore experiments. Anal. Chem. 81, 9689–9694 (2009).

    Article  CAS  Google Scholar 

  48. Palmqvist, N., Foster, T., Tarkowski, A. & Josefsson, E. Protein A is a virulence factor in Staphylococcus aureus arthritis and septic death. Microb. Pathog. 33, 239–249 (2002).

    Article  CAS  Google Scholar 

  49. Lindmark, R., Thorentolling, K. & Sjoquist, J. Binding of immunoglobulins to protein-A and immunoglobulin levels in mammalian sera. J. Immunol. Methods 62, 1–13 (1983).

    Article  CAS  Google Scholar 

  50. Rousseaux, J., Picque, M. T., Bazin, H. & Biserte, G. Rat IgG subclasses: differences in affinity to protein A–sepharose. Mol. Immunol. 18, 639–645 (1981).

    Article  CAS  Google Scholar 

  51. Escribano, M. J., Haddada, H. & de Vaux Saint Cyr, C. Isolation of two immunoglobulin G subclasses, IgG2 and IgG1, from hamster serum using protein A–sepharose. J. Immunol. Methods 52, 63–72 (1982).

    Article  CAS  Google Scholar 

  52. Coe, J. E. Humoral immunity and serum-proteins in syrian-hamster. Fed. Proc. 37, 2030–2031 (1978).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank G. Abstreiter for his support, and M. Firnkes, D. Pedone, A. Kleefen and M. Langecker for discussions. This work was supported by the German Research Foundation DFG (SFB 863 and SFB 807), the TUM Institute for Advanced Study, the Federal Ministry of Education and Research BMBF (0312031/0312034), and the Clusters of Excellence Nanosystems Initiative Munich and Macromolecular Complexes (at the Goethe-University Frankfurt).

Author information

Authors and Affiliations

Authors

Contributions

U.R., R.We. and R.T. devised the research. R.We. prepared the pores and performed experiments. V.G. and R.Wi. synthesized the NTA compounds. R.We., U.R. and R.T. analysed the data. R.We. and U.R. wrote the paper.

Corresponding authors

Correspondence to Robert Tampé or Ulrich Rant.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3073 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, R., Gatterdam, V., Wieneke, R. et al. Stochastic sensing of proteins with receptor-modified solid-state nanopores. Nature Nanotech 7, 257–263 (2012). https://doi.org/10.1038/nnano.2012.24

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.24

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing