Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Biosynthesis of luminescent quantum dots in an earthworm


The synthesis of designer solid-state materials by living organisms is an emerging field in bio-nanotechnology. Key examples include the use of engineered viruses as templates for cobalt oxide (Co3O4) particles1, superparamagnetic cobalt–platinum alloy nanowires2 and gold–cobalt oxide nanowires3 for photovoltaic and battery-related applications. Here, we show that the earthworm's metal detoxification pathway can be exploited to produce luminescent, water-soluble semiconductor cadmium telluride (CdTe) quantum dots that emit in the green region of the visible spectrum when excited in the ultraviolet region. Standard wild-type Lumbricus rubellus earthworms were exposed to soil spiked with CdCl2 and Na2TeO3 salts for 11 days. Luminescent quantum dots were isolated from chloragogenous tissues surrounding the gut of the worm, and were successfully used in live-cell imaging. The addition of polyethylene glycol on the surface of the quantum dots allowed for non-targeted, fluid-phase uptake by macrophage cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematics of the earthworm used and optical characterization of the quantum dots.
Figure 2: Microscopy analysis of the CdTe particles isolated from the chloragogenous cells.
Figure 3: Cell imaging using the CdTe quantum dots isolated from the chloragogenous tissues.


  1. 1

    Nam, K. T. et al. Stamped microbattery electrodes based on self-assembled M13 viruses. Proc. Natl Acad. Sci. USA 105, 17227–17231 (2008).

    CAS  Article  Google Scholar 

  2. 2

    Lee, S.-K., Yun, D. S. & Belcher, A. M. Cobalt ion mediated self-assembly of genetically engineered bacteriophage for biomimetic Co–Pt hybrid material. Biomacromolecules 7, 14–17 (2006).

    CAS  Article  Google Scholar 

  3. 3

    Nam, K. T. et al. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312, 885–888 (2006).

    CAS  Article  Google Scholar 

  4. 4

    Dameron, C. T. et al. Biosynthesis of cadmium-sulphide quantum semiconductor crystallites. Nature 338, 596–597 (1989) .

    CAS  Article  Google Scholar 

  5. 5

    Sweeney, R. Y. et al. Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem. Biol. 11, 1553–1559 (2004).

    CAS  Article  Google Scholar 

  6. 6

    Krumov, N., Oder, S., Perner-Nochta, I., Angelov, A. & Posten, C. Accumulation of CdS nanoparticles by yeasts in a fed-batch bioprocess. J. Biotechnol. 132, 481–486 (2007).

    CAS  Article  Google Scholar 

  7. 7

    Bao, H. et al. Extracellular microbial synthesis of biocompatible CdTe quantum dots. Acta Biomater. 6, 3534–3541 (2010).

    CAS  Article  Google Scholar 

  8. 8

    Bao, H., Hao, N., Yang, Y. & Zhao, D. Biosynthesis of biocompatible cadmium telluride quantum dots using yeast cells. Nano Res. 3, 481–489 (2010).

    CAS  Article  Google Scholar 

  9. 9

    Kowshik, M., Vogel, W., Urban, J., Kulkarni, S. K. & Paknikar, K. M. Microbial synthesis of semiconductor PbS nanocrystallites. Adv. Mater. 14, 815–818 (2002).

    CAS  Article  Google Scholar 

  10. 10

    Kumar, S. A., Ansary, A. A., Ahmad, A. & Khan, M. I. Extracellular biosynthesis of CdSe quantum dots by the fungus, Fusarium oxysporum. J. Biomed. Nanotech. 3, 190–194 (2007).

    CAS  Article  Google Scholar 

  11. 11

    Khan, M. A. K. & Wang, F. Mercury-selenium compounds and their toxicological significance: toward a molecular understanding of the mercury–selenium antagonism. Environ. Toxicol. Chem. 28, 1567–1577 (2009).

    CAS  Article  Google Scholar 

  12. 12

    Stürzenbaum, S. R., Winters, C., Galay, M., Morgan, A. J. & Kille, P. Metal ion trafficking in earthworms—identification of a cadmium specific metallothionein. J. Biol. Chem. 276, 34013–34018 (2001).

    Article  Google Scholar 

  13. 13

    Stürzenbaum, S. R., Georgiev, O., Morgan, A. J. & Kille, P. Cadmium detoxification in earthworms: from genes to cells. Environ. Sci. Technol. 38, 6283–6289 (2004).

    Article  Google Scholar 

  14. 14

    Homa, J., Olchawa, E., Stürzenbaum, S. R., Morgan, A. J. & Plytycz, B. Early-phase immunodetection of metallothionein and heat shock proteins in extruded earthworm coelomocytes after dermal exposure to metal ions. Environ. Pollut. 135, 275–280 (2005).

    CAS  Article  Google Scholar 

  15. 15

    Morgan, A. J. et al. Differential metallothionein expression in earthworm (Lumbricus rubellus) tissues. Ecotox. Environ. Safety 57, 11–19 (2004).

    CAS  Article  Google Scholar 

  16. 16

    Jacob, C., Arteel, G. E., Kanda, T., Engman, L. & Sies, H. Water-soluble organotellurium compounds: catalytic protection against peroxynitrite ad and release of zinc from metallothionein. Chem. Res. Toxicol. 13, 3–9 (2000).

    CAS  Article  Google Scholar 

  17. 17

    Garberg, P. et al. Binding of tellurium to hepatocellular selenoproteins during incubation with inorganic tellurite: consequences for the activity of selenium-dependent glutathione peroxidise. Int. J. Biochem. Cell Biol. 31, 291–301 (1999).

    CAS  Article  Google Scholar 

  18. 18

    Rogach, A. L. et al. Aqueous synthesis of thiol-capped CdTe nanocrystals: state-of-the-art. J. Phys. Chem. C 111, 14628–14637 (2007).

    CAS  Article  Google Scholar 

  19. 19

    Cui, R. et al. Controllable synthesis of PbSe nanocubes in aqueous phase using a quasi-biosystem. J. Mater. Chem. 22, 3713–3716 (2012).

    CAS  Article  Google Scholar 

  20. 20

    Kessi, J. & Hanselmann, K. W. Similarities between the abiotic reduction of selenite with glutathione and the dissimilatory reaction mediated by Rhodospirillum rubrum and Escherichia coli. J. Biol. Chem. 279, 50662–50669 (2004).

    CAS  Article  Google Scholar 

  21. 21

    Wampler, J. E. & Jamieson, B. G. M. Earthworm bioluminescence: comparative physiology and biochemistry. Comp. Biochem. Physiol. 66B, 43–50 (1980).

    CAS  Google Scholar 

  22. 22

    Cholewa, J. et al. Autofluorescence in eleocytes of some earthworm species. Folia Histochem. Cytobiol. 44, 65–71 (2006).

    Google Scholar 

  23. 23

    Zhu, H. et al. A blue luminescent di-2-pyridylamine cadmium complex with an unexpected arrangement of thiocyanate ligands: a supramolecular layered structure based on hydrogen bonds and π–π stacking interactions. Inorg. Chem. Commun. 4, 577–581 (2001).

    CAS  Article  Google Scholar 

  24. 24

    McNulty, M., Puljung, M., Jefford, G. & Dubreuil, R. R. Evidence that a copper–metallothionein complex is responsible for fluorescence in acid-secreting cells of the Drosophila stomach. Cell Tissue Res. 304, 383–389 (2001).

    CAS  Article  Google Scholar 

  25. 25

    Wuister, S. F., Donegá, C. D. M. & Meijerink, A. J. Influence of thiol capping on the exciton luminescence and decay kinetics of CdTe and CdSe quantum dots. J. Phys. Chem. B 108, 17393–17397 (2004).

    CAS  Article  Google Scholar 

  26. 26

    Kulvietis, V., Streckyte, G. & Rotomskis, R. Spectroscopic investigations of CdTe quantum dot stability in different aqueous media. Lith. J. Phys. 51, 163–171 (2011).

    CAS  Article  Google Scholar 

  27. 27

    Sheng, Z., Han, H., Hu, X. & Chi, C. One-step growth of high luminescence CdTe quantum dots with low cytotoxicity in ambient atmospheric conditions. Dalton Trans. 39, 7017–7020 (2010).

    CAS  Article  Google Scholar 

  28. 28

    Ganther, H. E. Reduction of the selenotrisulfide derivative of glutathione to a persulfide analog by glutathione reductase. Biochemistry 10, 4089–4098 (1971).

    CAS  Article  Google Scholar 

Download references


The authors thank P. Kille, C. Winters and A. J. Morgan for their assistance in antibody generation and immunoperoxidase histochemistry, D. Spurgeon for supplying earthworms, W. Maret for useful discussions, the Nikon Imaging Centre at King's College London for assistance with cell imaging and A. Beavil for use of the Horiba FluoroCube. The authors also acknowledge partial funding from the Wellcome Trust EPSRC Centre of Excellence in Medical Engineering (WT 088641/Z/09/Z) and an Erwin Schrödinger Fellowship. TEM images were taken at Leeds Electron Microscopy and Spectroscopy Centre.

Author information




M.G. conceived the concept. M.G. and S.R.S. conceived the experiments. S.R.S., M.G., K.S., L.A.D., M.T. and A.Z. designed the experiments, supervised experiments and wrote the paper. M.H. and S.R.S. carried out experiments with worms and harvested the quantum dots. S.T., A.P., J.L., J.S.B., E.R. and R.A.K. analysed the particles.

Corresponding author

Correspondence to M. Green.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stürzenbaum, S., Höckner, M., Panneerselvam, A. et al. Biosynthesis of luminescent quantum dots in an earthworm. Nature Nanotech 8, 57–60 (2013).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research