Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bionanoelectronics

Getting close to the action

This article has been updated

Two independent groups have demonstrated that nanoscale electrodes can record action potentials in neurons and cardiac muscle cells, and a third group has shown that nanowire field-effect transistors can make electrical measurements on biological materials with unprecedented spatial resolution.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Getting inside cells.

Change history

  • 22 February 2012

    In the News & Views article 'Getting close to the action' originally published online (Nature Nanotech. http://dx.doi.org/10.1038/nnano.2012.22 2012), the signal-to-noise ratio determined by Cui and co-workers was given incorrectly as '7'; it should have read 'over 100'. This error has now been corrected in all versions of the News & Views article.'

References

  1. 1

    Duan, X. et al. Nature Nanotech. http://dx.doi.org/10.1038/nnano.2011.223 (2011).

  2. 2

    Robinson, J. T. et al. Nature Nanotech. http://dx.doi.org/10.1038/nnano.2011.249 (2012).

  3. 3

    Xie, C., Lin, Z., Hanson, L., Cui, Y. & Cui, B. Nature Nanotech. http://dx.doi.org/10.1038/nnano.2012.8 (2012).

  4. 4

    Shalek, A. K. et al. Proc. Natl Acad. Sci. USA 107, 1870–1875 (2010).

    CAS  Article  Google Scholar 

  5. 5

    Araque, A., Parpura, V., Sanzgiri, R. P. & Haydon, P. G. Eur. J. Neurosci. 10, 2129–2142 (1998).

    CAS  Article  Google Scholar 

  6. 6

    Katz, L. C. & Dalva, M. B. J. Neurosci. Methods 54, 205–218 (1994).

    CAS  Article  Google Scholar 

  7. 7

    Mancuso, J. J. et al. Exp. Physiol. 96, 26–33 (2010).

    Article  Google Scholar 

  8. 8

    Xie, C. et al. Nano Lett. 10, 4020–4024 (2010).

    CAS  Article  Google Scholar 

  9. 9

    Keefer, E. W., Botterman, B. R., Romero, M. I., Rossi, A. F. & Gross, G. W. Nature Nanotech. 3, 434–439 (2008).

    CAS  Article  Google Scholar 

  10. 10

    Yu, Z. et al. Nano Lett. 7, 2188–2195 (2007).

    CAS  Article  Google Scholar 

  11. 11

    Bekyarova, E. et al. J. Biomed. Nanotechnol. 1, 3–17 (2005).

    CAS  Article  Google Scholar 

  12. 12

    Patolsky, F. et al. Science 313, 1100–1104 (2006).

    CAS  Article  Google Scholar 

  13. 13

    Cohen-Karni, T., Timko, B. P., Weiss, L. E. & Lieber, C. M. Proc. Natl Acad. Sci. USA 106, 7309–7313 (2009).

    CAS  Article  Google Scholar 

  14. 14

    Tian, B. et al. Science 329, 830–834 (2010).

    CAS  Article  Google Scholar 

  15. 15

    Stuart, G. J., Dodt, H. U. & Sakmann, B. Pflugers Arch 423, 511–518 (1993).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vladimir Parpura.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Parpura, V. Getting close to the action. Nature Nanotech 7, 143–145 (2012). https://doi.org/10.1038/nnano.2012.22

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research