Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Bionanoelectronics

Getting close to the action

This article has been updated

Two independent groups have demonstrated that nanoscale electrodes can record action potentials in neurons and cardiac muscle cells, and a third group has shown that nanowire field-effect transistors can make electrical measurements on biological materials with unprecedented spatial resolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Getting inside cells.

Change history

  • 22 February 2012

    In the News & Views article 'Getting close to the action' originally published online (Nature Nanotech. http://dx.doi.org/10.1038/nnano.2012.22 2012), the signal-to-noise ratio determined by Cui and co-workers was given incorrectly as '7'; it should have read 'over 100'. This error has now been corrected in all versions of the News & Views article.'

References

  1. Duan, X. et al. Nature Nanotech. http://dx.doi.org/10.1038/nnano.2011.223 (2011).

  2. Robinson, J. T. et al. Nature Nanotech. http://dx.doi.org/10.1038/nnano.2011.249 (2012).

  3. Xie, C., Lin, Z., Hanson, L., Cui, Y. & Cui, B. Nature Nanotech. http://dx.doi.org/10.1038/nnano.2012.8 (2012).

  4. Shalek, A. K. et al. Proc. Natl Acad. Sci. USA 107, 1870–1875 (2010).

    Article  CAS  Google Scholar 

  5. Araque, A., Parpura, V., Sanzgiri, R. P. & Haydon, P. G. Eur. J. Neurosci. 10, 2129–2142 (1998).

    Article  CAS  Google Scholar 

  6. Katz, L. C. & Dalva, M. B. J. Neurosci. Methods 54, 205–218 (1994).

    Article  CAS  Google Scholar 

  7. Mancuso, J. J. et al. Exp. Physiol. 96, 26–33 (2010).

    Article  Google Scholar 

  8. Xie, C. et al. Nano Lett. 10, 4020–4024 (2010).

    Article  CAS  Google Scholar 

  9. Keefer, E. W., Botterman, B. R., Romero, M. I., Rossi, A. F. & Gross, G. W. Nature Nanotech. 3, 434–439 (2008).

    Article  CAS  Google Scholar 

  10. Yu, Z. et al. Nano Lett. 7, 2188–2195 (2007).

    Article  CAS  Google Scholar 

  11. Bekyarova, E. et al. J. Biomed. Nanotechnol. 1, 3–17 (2005).

    Article  CAS  Google Scholar 

  12. Patolsky, F. et al. Science 313, 1100–1104 (2006).

    Article  CAS  Google Scholar 

  13. Cohen-Karni, T., Timko, B. P., Weiss, L. E. & Lieber, C. M. Proc. Natl Acad. Sci. USA 106, 7309–7313 (2009).

    Article  CAS  Google Scholar 

  14. Tian, B. et al. Science 329, 830–834 (2010).

    Article  CAS  Google Scholar 

  15. Stuart, G. J., Dodt, H. U. & Sakmann, B. Pflugers Arch 423, 511–518 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Parpura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parpura, V. Getting close to the action. Nature Nanotech 7, 143–145 (2012). https://doi.org/10.1038/nnano.2012.22

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.22

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing