Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electrostatic assembly of binary nanoparticle superlattices using protein cages

Abstract

Binary nanoparticle superlattices are periodic nanostructures with lattice constants much shorter than the wavelength of light1,2 and could be used to prepare multifunctional metamaterials3,4. Such superlattices are typically made from synthetic nanoparticles5,6,7,8, and although biohybrid structures have been developed9,10,11,12,13,14,15, incorporating biological building blocks into binary nanoparticle superlattices remains challenging16,17,18. Protein-based nanocages provide a complex yet monodisperse and geometrically well-defined hollow cage that can be used to encapsulate different materials19,20. Such protein cages have been used to program the self-assembly of encapsulated materials to form free-standing crystals21,22 and superlattices at interfaces21,23 or in solution24,25. Here, we show that electrostatically patchy protein cages—cowpea chlorotic mottle virus and ferritin cages—can be used to direct the self-assembly of three-dimensional binary superlattices. The negatively charged cages can encapsulate RNA or superparamagnetic iron oxide nanoparticles, and the superlattices are formed through tunable electrostatic interactions with positively charged gold nanoparticles. Gold nanoparticles and viruses form an AB8fcc crystal structure that is not isostructural with any known atomic or molecular crystal structure and has previously been observed only with large colloidal polymer particles26. Gold nanoparticles and empty or nanoparticle-loaded ferritin cages form an interpenetrating simple cubic AB structure (isostructural with CsCl). We also show that these magnetic assemblies provide contrast enhancement in magnetic resonance imaging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Materials used for the assembly of binary protein cage–nanoparticle superlattices.
Figure 2: Self-assembly of three-dimensional binary CCMV–AuNP superlattices.
Figure 3: TEM characterization of the AB8fcc-type (CCMV–AuNP8)fcc superlattice.
Figure 4: Characterization of ABsc-type (aFT–AuNP)sc and (MF–AuNP)sc superlattices.

Similar content being viewed by others

References

  1. Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O'Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006).

    Article  CAS  Google Scholar 

  2. Macfarlane, R. J. et al. Nanoparticle superlattice engineering with DNA. Science 334, 204–208 (2011).

    Article  CAS  Google Scholar 

  3. Grzybowski, B. A., Wilmer, C. E., Kim, J., Browne, K. P. & Bishop, K. J. M. Self-assembly: from crystals to cells. Soft Matter 5, 1110–1128 (2009).

    Article  CAS  Google Scholar 

  4. Podsiadlo, P., Krylova, G., Demortière, A. & Shevchenko, E. Multicomponent periodic nanoparticle superlattices. J. Nanopart. Res. 13, 15–32 (2011).

    Article  CAS  Google Scholar 

  5. Kalsin, A. M. et al. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 312, 420–424 (2006).

    Article  CAS  Google Scholar 

  6. Dong, A., Chen, J., Vora, P. M., Kikkawa, J. M. & Murray, C. B. Binary nanocrystal superlattice membranes self-assembled at the liquid–air interface. Nature 466, 474–477 (2010).

    Article  CAS  Google Scholar 

  7. Grzelczak, M., Vermant, J., Furst, E. M. & Liz-Marzán, L. M. Directed self-assembly of nanoparticles. ACS Nano 4, 3591–3605 (2010).

    Article  CAS  Google Scholar 

  8. Pileni, M-P. Self-assembly of inorganic nanocrystals: fabrication and collective intrinsic properties. Acc. Chem. Res. 40, 685–693 (2007).

    Article  CAS  Google Scholar 

  9. Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549–552 (2008).

    Article  CAS  Google Scholar 

  10. Park, S. Y. et al. DNA-programmable nanoparticle crystallization. Nature 451, 553–556 (2008).

    Article  CAS  Google Scholar 

  11. Brodin, J. D. et al. Metal-directed, chemically tunable assembly of one-, two- and three-dimensional crystalline protein arrays. Nature Chem. 4, 375–382 (2012).

    Article  CAS  Google Scholar 

  12. Cigler, P., Lytton-Jean, A. K. R., Anderson, D. G., Finn, M. G. & Park, S. Y. DNA-controlled assembly of a NaTl lattice structure from gold nanoparticles and protein nanoparticles. Nature Mater. 9, 918–922 (2010).

    Article  CAS  Google Scholar 

  13. Hu, M., Qian, L., Briñas, R. P., Lymar, E. S. & Hainfeld, J. F. Assembly of nanoparticle–protein binding complexes: from monomers to ordered arrays. Angew. Chem. Int. Ed. 46, 5111–5114 (2007).

    Article  CAS  Google Scholar 

  14. Sinclair, J. C., Davies, K. M., Venien-Bryan, C. & Noble, M. E. M. Generation of protein lattices by fusing proteins with matching rotational symmetry. Nature Nanotech. 6, 558–562 (2011).

    Article  CAS  Google Scholar 

  15. McMillan, R. A. et al. Ordered nanoparticle arrays formed on engineered chaperonin protein templates. Nature Mater. 1, 247–252 (2002).

    Article  CAS  Google Scholar 

  16. Aljabali, A. A. A., Lomonossoff, G. P. & Evans, D. J. CPMV-polyelectrolyte-templated gold nanoparticles. Biomacromolecules 12, 2723–2728 (2011).

    Article  CAS  Google Scholar 

  17. DuFort, C. C. & Dragnea, B. Bio-enabled synthesis of metamaterials. Annu. Rev. Phys. Chem. 61, 323–344 (2010).

    Article  CAS  Google Scholar 

  18. Srivastava, S. et al. Integrated magnetic bionanocomposites through nanoparticle-mediated assembly of ferritin. J. Am. Chem. Soc. 129, 11776–11780 (2007).

    Article  CAS  Google Scholar 

  19. Uchida, M. et al. Biological containers: protein cages as multifunctional nanoplatforms. Adv. Mater. 19, 1025–1042 (2007).

    Article  CAS  Google Scholar 

  20. De la Escosura, A., Nolte, R. J. M. & Cornelissen, J. J. L. M. Viruses and protein cages as nanocontainers and nanoreactors. J. Mater. Chem. 19, 2274–2278 (2009).

    Article  CAS  Google Scholar 

  21. Kewalramani, S. et al. Systematic approach to electrostatically induced 2D crystallization of nanoparticles at liquid interfaces. Soft Matter 7, 939–945 (2011).

    Article  CAS  Google Scholar 

  22. Okuda, M. et al. Fe3O4 nanoparticles: protein-mediated crystalline magnetic superstructures. Nanotechnology 23, 415601 (2012).

    Article  Google Scholar 

  23. Alloyeau, D. et al. Biotemplated synthesis of metallic nanoclusters organized in tunable two-dimensional superlattices. J. Phys. Chem. B 115, 20926–20930 (2011).

    CAS  Google Scholar 

  24. Kostiainen, M. A. et al. Hierarchical self-assembly and optical disassembly for controlled switching of magnetoferritin nanoparticle magnetism. ACS Nano 5, 6394–6402 (2011).

    Article  CAS  Google Scholar 

  25. Kostiainen, M. A., Kasyutich, O., Cornelissen, J. J. L. M. & Nolte, R. J. M. Self-assembly and optically triggered disassembly of hierarchical dendron–virus complexes. Nature Chem. 2, 394–399 (2010).

    Article  CAS  Google Scholar 

  26. Hynninen, A. P., Christova, C. G., van Roij, R., van Blaaderen, A. & Dijkstra, M. Prediction and observation of crystal structures of oppositely charged colloids. Phys. Rev. Lett. 96, 138308 (2006).

    Article  Google Scholar 

  27. Meldrum, F., Heywood, B. & Mann, S. Magnetoferritin: in vitro synthesis of a novel magnetic protein. Science 257, 522–523 (1992).

    Article  CAS  Google Scholar 

  28. Glotzer, S. C. & Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nature Mater. 6, 557–562 (2007).

    Article  Google Scholar 

  29. Wang, Y. et al. Colloids with valence and specific directional bonding. Nature 491, 51–55 (2012).

    Article  CAS  Google Scholar 

  30. Gröschel, A. H. et al. Precise hierarchical self-assembly of multicompartment micelles. Nature Commun. 3, 710 (2012).

    Article  Google Scholar 

  31. Mani, E. et al. Sheet-like assemblies of spherical particles with point-symmetrical patches. J. Chem. Phys. 136, 144706 (2012).

    Article  Google Scholar 

  32. Velev, O. D. Self-assembly of unusual nanoparticle crystals. Science 312, 376–377 (2006).

    Article  CAS  Google Scholar 

  33. Leunissen, M. E. et al. Ionic colloidal crystals of oppositely charged particles. Nature 437, 235–240 (2005).

    Article  CAS  Google Scholar 

  34. Kowalczyk, B. et al. Size selection during crystallization of oppositely charged nanoparticles. Chem. Eur. J. 15, 2032–2035 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Academy of Finland (project 13137582), the Emil Aaltonen Foundation and an Aalto Starting Grant. P.C. thanks the Associazione Italiana per la Ricerca sul Cancro for funding (grant agreement MFAG10545) and the Italian Ministry of Economy and Finance for funding the Project ‘FaReBio di Qualità’. This work made use of the Aalto University Nanomicroscopy Center (Aalto-NMC) premises. The authors thank J. van Lierop, O. Kasyutich, R. Nolte, J. Cornelissen, R. Sepponen, T. Lahtinen and S. van Dijken for discussions and support, and A. Nykänen for TEM support.

Author information

Authors and Affiliations

Authors

Contributions

M.A.K. conceived the study and, together with P.H. and A.L., designed the experiments. P.H. contributed to SAXS measurements and cryo-ET data analysis. A.L. performed MRI measurements and data analysis. V.L. synthesized gold nanoparticles. J.S. and J.R. operated the TEM. P.C. prepared cationized magnetoferritin. M.A.K. performed all other experiments and wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Mauri A. Kostiainen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3107 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostiainen, M., Hiekkataipale, P., Laiho, A. et al. Electrostatic assembly of binary nanoparticle superlattices using protein cages. Nature Nanotech 8, 52–56 (2013). https://doi.org/10.1038/nnano.2012.220

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.220

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing