A single-atom transistor

Abstract

The ability to control matter at the atomic scale and build devices with atomic precision is central to nanotechnology. The scanning tunnelling microscope1 can manipulate individual atoms2 and molecules on surfaces, but the manipulation of silicon to make atomic-scale logic circuits has been hampered by the covalent nature of its bonds. Resist-based strategies have allowed the formation of atomic-scale structures on silicon surfaces3, but the fabrication of working devices—such as transistors with extremely short gate lengths4, spin-based quantum computers5,6,7,8 and solitary dopant optoelectronic devices9—requires the ability to position individual atoms in a silicon crystal with atomic precision. Here, we use a combination of scanning tunnelling microscopy and hydrogen-resist lithography to demonstrate a single-atom transistor in which an individual phosphorus dopant atom has been deterministically placed within an epitaxial silicon device architecture with a spatial accuracy of one lattice site. The transistor operates at liquid helium temperatures, and millikelvin electron transport measurements confirm the presence of discrete quantum levels in the energy spectrum of the phosphorus atom. We find a charging energy that is close to the bulk value, previously only observed by optical spectroscopy10.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Single-atom transistor based on deterministic positioning of a phosphorus atom in epitaxial silicon.
Figure 2: Calculation of the donor potential within the device architecture.
Figure 3: Electronic spectrum of a single-atom transistor.

References

  1. 1

    Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. Tunneling through a controllable vacuum gap. Appl. Phys. Lett. 40, 178–180 (1982).

    CAS  Article  Google Scholar 

  2. 2

    Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526 (1990).

    CAS  Google Scholar 

  3. 3

    Lopinski, G. P., Wayner, D. D. M. & Wolkow, R. A. Self-directed growth of molecular nanostructures on silicon. Nature 406, 48–51 (2000).

    CAS  Article  Google Scholar 

  4. 4

    Frank, D. J. et al. Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 89, 259–288 (2001).

    CAS  Article  Google Scholar 

  5. 5

    Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998).

    CAS  Article  Google Scholar 

  6. 6

    Vrijen, R. et al. Electron-spin-resonance transistors for quantum computing in silicon–germanium heterostructures. Phys. Rev. A 62, 012306 (2000).

    Article  Google Scholar 

  7. 7

    Hollenberg, L. C. L., Greentree, A. D., Fowler, A. G. & Wellard, C. J. Two dimensional architectures for donor based quantum computing. Phys. Rev. B 74, 045311 (2006).

    Article  Google Scholar 

  8. 8

    Morton, J. J. L., McCamey, D. R., Eriksson, M. A. & Lyon, S. A. Embracing the quantum limit in silicon computing. Nature 479, 345–353 (2011).

    CAS  Article  Google Scholar 

  9. 9

    Koenraad, P. M. & Flatté, M. E. Single dopants in semiconductors. Nature Mater. 10, 91–100 (2011).

    CAS  Article  Google Scholar 

  10. 10

    Ramdas, A. K. & Rodriguez, S. Spectroscopy of the solid-state analogs of the hydrogen atom: donors and acceptors in semiconductors. Rep. Prog. Phys. 44, 1297–1387 (1981).

    Article  Google Scholar 

  11. 11

    Roy, S. & Asenov, A. Where do the dopants go? Science 309, 388–390 (2005).

    CAS  Article  Google Scholar 

  12. 12

    Shinada, T., Okamoto, S., Kobayashi, T. & Ohdomari, I. Enhancing semiconductor device performance using ordered dopant arrays. Nature 437, 1128–1131 (2005).

    CAS  Article  Google Scholar 

  13. 13

    Zhirnov, V. V., Cavin, R. K., Hutchby, J. A. & Bourianoff, G. I. Limits to binary logic switch scaling—a Gedanken model. Proc. IEEE 91, 1934–1939 (2003).

    Article  Google Scholar 

  14. 14

    Lansbergen, G. P. et al. Gate-induced quantum-confinement transition of a single dopant atom in a silicon FinFET. Nature Phys. 4, 656–661 (2008).

    CAS  Article  Google Scholar 

  15. 15

    Calvet, L. E., Snyder, J. P. & Wernsdorfer, W. Excited-state spectroscopy of single Pt atoms in Si. Phys. Rev. B 78, 195309 (2008).

    Article  Google Scholar 

  16. 16

    Tan, K. Y. et al. Transport spectroscopy of single phosphorus donors in a silicon nanoscale transistor. Nano Lett. 10, 11–15 (2010).

    CAS  Article  Google Scholar 

  17. 17

    Pierre, M. et al. Single-donor ionization energies in a nanoscale CMOS channel. Nature Nanotech. 5, 133–137 (2010).

    CAS  Article  Google Scholar 

  18. 18

    Tyryshkin, A. M. et al. Electron spin coherence exceeding seconds in high-purity silicon. Nature Mater. 11, 143–147 (2012).

    CAS  Article  Google Scholar 

  19. 19

    Morello, A. et al. Single-shot readout of an electron spin in silicon. Nature 467, 687–691 (2010).

    CAS  Article  Google Scholar 

  20. 20

    Hollenberg, L. C. L. et al. Charge-based quantum computing using single donors in semiconductors. Phys. Rev. B 69, 113301 (2004).

    Article  Google Scholar 

  21. 21

    Koiller, B., Hu, X. D. & Das Sarma, S . Exchange in silicon-based quantum computer architecture. Phys. Rev. Lett. 88, 027903 (2002).

    Article  Google Scholar 

  22. 22

    Lyding, J. W., Shen, T. C., Hubacek, J. S., Tucker, J. R. & Abeln, G. C. Nanoscale patterning and oxidation of H-passivated Si(100)-2×1 surfaces with an ultrahigh-vacuum scanning tunneling microscope. Appl. Phys. Lett. 64, 2010–2012 (1994).

    CAS  Article  Google Scholar 

  23. 23

    Schofield, S. R. et al. Atomically precise placement of single dopants in Si. Phys. Rev. Lett. 91, 136104 (2003).

    CAS  Article  Google Scholar 

  24. 24

    Fuhrer, A., Füchsle, M., Reusch, T. C. G., Weber, B. & Simmons, M. Y. Atomic-scale, all epitaxial in-plane gated donor quantum dot in silicon. Nano Lett. 9, 707–710 (2009).

    CAS  Article  Google Scholar 

  25. 25

    Wilson, H. F. et al. Thermal dissociation and desorption of PH3 on Si(001): a reinterpretation of spectroscopic data. Phys. Rev. B 74, 195310 (2006).

    Article  Google Scholar 

  26. 26

    Klimeck, G., Lake, R., Bowen, R. C., Frensley, W. R. & Moise, T. S. Quantum device simulation with a generalized tunneling formula. Appl. Phys. Lett. 67, 2539–2541 (1995).

    CAS  Article  Google Scholar 

  27. 27

    Rahman, R. et al. Electric field reduced charging energies and two-electron bound excited states of single donors in silicon. Phys. Rev. B 84, 115428 (2011).

    Article  Google Scholar 

  28. 28

    Klimeck, G., Oyafuso, F., Boykin, T. B., Bowen, R. C. & von Allmen, P. Development of a nanoelectronic 3D (NEMO 3D) simulator for multimillion atom simulations and its application to alloyed quantum dots. Comput. Model. Eng. Sci. 3, 601–642 (2002).

    Google Scholar 

  29. 29

    Lee, S. et al. Electronic structure of realistically extended, atomistically resolved disordered Si:P δ-doped layers. Phys. Rev. B 84, 205309 (2011).

    Article  Google Scholar 

  30. 30

    Weber, B. et al. Ohm's law survives to the atomic scale. Science 335, 64–67 (2012).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge discussions with S. Rogge, J. Verduijn and R. Rahman. This research was conducted by the Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology (project no. CE110001027). The research was also supported by the US National Security Agency and the US Army Research Office (contract no. W911NF-08-1-0527). M.Y.S. acknowledges a Federation Fellowship. L.H. acknowledges an Australian Professorial Fellowship.

Author information

Affiliations

Authors

Contributions

M.F. and J.M. carried out the fabrication and measurements. M.F., J.M., S.M., O.W., M.S., G.K. and L.H. analysed the data. H.R. and S.L. carried out the calculations. M.S. planned the project. G.K. and L.H. planned the modelling approach. M.F., J.M., S.M., H.R., G.K., L.H. and M.S. prepared the manuscript.

Corresponding author

Correspondence to Michelle Y. Simmons.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fuechsle, M., Miwa, J., Mahapatra, S. et al. A single-atom transistor. Nature Nanotech 7, 242–246 (2012). https://doi.org/10.1038/nnano.2012.21

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research