Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Controlled clockwise and anticlockwise rotational switching of a molecular motor


The design of artificial molecular machines1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19 often takes inspiration from macroscopic machines13,14,15,16,17,18,19. However, the parallels between the two systems are often only superficial, because most molecular machines are governed by quantum processes. Previously, rotary molecular motors3 powered by light4,5,6 and chemical7,8,9,10,11 energy have been developed. In electrically driven motors, tunnelling electrons from the tip of a scanning tunnelling microscope have been used to drive the rotation of a simple rotor12 in a single direction and to move a four-wheeled molecule across a surface13. Here, we show that a stand-alone molecular motor adsorbed on a gold surface can be made to rotate in a clockwise or anticlockwise direction by selective inelastic electron tunnelling through different subunits of the motor. Our motor is composed of a tripodal stator for vertical positioning, a five-arm rotor for controlled rotations, and a ruthenium atomic ball bearing connecting the static and rotational parts. The directional rotation arises from sawtooth-like rotational potentials, which are solely determined by the internal molecular structure and are independent of the surface adsorption site.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the molecular motor.
Figure 2: Rotational energy and electronic structure.
Figure 3: Controlled rotation.
Figure 4: Rotation mechanism.


  1. Bath, J. & Turberfield, A. J. DNA nanomachines. Nature Nanotech. 2, 275–284 (2007).

    Article  CAS  Google Scholar 

  2. Goel, A. & Vogel, V. Harnessing biological motors to engineer systems for nanoscale transport and assembly. Nature Nanotech. 8, 465–475 (2008).

    Article  Google Scholar 

  3. Kottas, G. S., Clarke, L. I., Horinek, D. & Michl, J. Artificial molecular rotors. Chem. Rev. 105, 1281–1376 (2005).

    Article  CAS  Google Scholar 

  4. Van Delden, R. A. et al. Unidirectional molecular motor on a gold surface. Nature 437, 1337–1340 (2005).

    Article  CAS  Google Scholar 

  5. Liu, M., Zentgraf, T., Liu, Y. M., Bartel, G. & Zhang, X. Light-driven nanoscale plasmonic motors. Nature Nanotech. 8, 570–573 (2010).

    Article  Google Scholar 

  6. Ruangsupapichat, N., Pollard, M. M., Harutyunyan, S. R. & Feringa, B. L. Reversing the direction in a light-driven rotary molecular motor. Nature Chem. 3, 53–60 (2011).

    Article  CAS  Google Scholar 

  7. Hernandez, J. V., Kay, E. R. & Leigh, D. A. A reversible synthetic rotary molecular motor. Science 306, 1532–1537 (2004).

    Article  CAS  Google Scholar 

  8. Kelly, T. R., Silva, R. A., De Silva, H., Jasmin, S. & Zhao, Y. J. A rotationally designed prototype of a molecular motor. J. Am. Chem. Soc. 122, 6935–6949 (2000).

    Article  CAS  Google Scholar 

  9. Chen, L., Nakamura, M., Schindler, T. D., Parker, D. & Bryant, Z. Engineering controllable bidirectional molecular motors based on myosin. Nature Nanotech. 7, 252–256 (2012).

    Article  CAS  Google Scholar 

  10. Lee, L. K., Ginsburg, M. A., Crovace, C., Donohoe, M. & Stock, D. Structure of the torque ring of the flagellar motor and the molecular basis for the rotational switching. Nature 466, 996–1000 (2010).

    Article  CAS  Google Scholar 

  11. Uchihashi, T., Iino, R., Ando, T. & Noji, H. High-speed atomic force microscopy reveals rotary catalysis of rotorless F1-ATPase. Science 333, 755–758 (2011).

    Article  CAS  Google Scholar 

  12. Tierney, H. L. et al. Experimental demonstration of a single-molecule electric motor Nature Nanotech. 6, 625–629 (2011).

    Article  CAS  Google Scholar 

  13. Kudernac, T. et al. Electrically driven directional motion of a four-wheeled molecule on a metal surface. Nature 479, 208–211 (2011).

    Article  CAS  Google Scholar 

  14. Astumian, R. D. Thermodynamics and kinetics of a Brownian motor. Science 276, 917–922 (1997).

    Article  CAS  Google Scholar 

  15. Manzano, C. et al. Step-by-step rotation of a molecule-gear mounted on an atomic-scale axis. Nature Mater. 8, 576–579 (2009).

    Article  CAS  Google Scholar 

  16. Wickham, S. F. J. et al. Direct observation of stepwise movement of a synthetic molecular transporter. Nature Nanotech. 6, 166–169 (2011).

    Article  CAS  Google Scholar 

  17. Shirai, Y., Osgood, A. J., Zhao, Y. M., Kelly, K. F. & Tour, J. M. Directional control in thermally driven single-molecule nanocars. Nano Lett. 5, 2330–2334 (2005).

    Article  CAS  Google Scholar 

  18. Vives, G. & Rapenne, G. Directed synthesis of symmetric and dissymmetric molecular motors built around a ruthenium cyclopentadienyl tris(indazolyl)borate complex. Tetrahedron 64, 11462–11468 (2008).

    Article  CAS  Google Scholar 

  19. Vives, G., de Rouville, H. P. J., Carella, A., Launay, J. P. & Rapenne, G. Prototypes of molecular motors based on star-shaped organometallic ruthenium complexes. Chem. Soc. Rev. 38, 1551–1561 (2009).

    Article  CAS  Google Scholar 

  20. Joachim, C. et al. Multiple atomic scale solid surface interconnects for atom circuits and molecule logic gates. J. Phys. Condens. Matter 22, 084025 (2010).

    Article  CAS  Google Scholar 

  21. Stipe, B. C., Razaei, M. A. & Ho, W. Coupling of vibrational excitation to the rotational motion of a single adsorbed molecule. Phys. Rev. Lett. 81, 1263–1266 (1988).

    Article  Google Scholar 

  22. Sainoo, Y., Kim, Y., Komeda, T., Kawai, M. & Shigekawa, H. Observation of cis-2-butene molecule on Pd(110) by cryogenic STM: site determination using tunneling-current-induced rotation. Surf. Sci. 536, L403–L407 (2003).

    Article  CAS  Google Scholar 

  23. Henningsen, N. et al. Inducing the rotation of a single phenyl ring with tunneling electrons. J. Phys. Chem. C 111, 14843–14848 (2007).

    Article  CAS  Google Scholar 

  24. Wahl, M., Stohr, M., Spillmann, H., Jung, T. A. & Gade, L. H. Rotation–libration in a hierarchic supramolecualr rotor–stator system. Chem. Commun. 13, 1349–1351 (2007).

    Article  Google Scholar 

  25. Tanaka, H. et al. Molecular rotation in self-assembled multidecker porphyrin complexes. ACS Nano 5, 9575–9582 (2011).

    Article  CAS  Google Scholar 

  26. Hla, S. W. STM single atom/molecule manipulation and its application to nanoscience and technology. J. Vac. Sci. Technol. B 23, 1351–1360 (2005).

    Article  CAS  Google Scholar 

  27. Parschau, M., Passerone, D., Rieder, K.-H., Hug, H. J. & Ernst, K.-H. Switching the chirality of single adsorbate complexes. Angew. Chem. Int. Ed. 48, 4065–4068 (2009).

    Article  CAS  Google Scholar 

  28. Iancu, V. & Hla, S. W. Realizing of a four-step molecular switch in scanning tunneling microscope manipulation of single chlorophyll-a molecules. Proc. Natl Acad. Sci. USA 103, 13718–13721 (2006).

    Article  CAS  Google Scholar 

  29. Pascual, J. I., Lorente, N., Song, Z., Conrad, H. & Rust, H. P. Selectivity in vibrationally mediated single-molecule chemistry. Nature 423, 525–528 (2003).

    Article  CAS  Google Scholar 

  30. Ample, F. & Joachim, C. A semi-empirical study of polyacene molecules adsorbed on a Cu(110) surface. Surf. Sci. 600, 3243–3251 (2006).

    Article  CAS  Google Scholar 

  31. Astumian, R. D. & Bier, M. Mechanochemical coupling of the motion of molecular motors to ATP hydrolysis. Bio. Phys. 70, 637–653 (1996).

    CAS  Google Scholar 

  32. Ait-Haddou, R. & Herzog, W. Brownian ratchet model of molecular motors. Cell Biochem. Biophys. 38, 191–213 (2003).

    Article  CAS  Google Scholar 

  33. Lee, H. & Levitov, L. S. Current fluctuations in a single tunnel junction. Phys. Rev. B 53, 7383–7391 (1996).

    Article  CAS  Google Scholar 

Download references


The authors acknowledge financial support from the AUTOMOL project (ANR 09-NANO-040) for molecular motor synthesis and calculations, the US Department of Energy (BES grant DE-FG-02-02ER46012) for the work of the Ohio University team (U.G.E.P., H.K., Y.Z. and S.-W. H), the A*STAR Atom Tech VIP programme phase III (2011–2014), CNRS and the University Paul Sabatier of Toulouse. G.V. acknowledges the French Ministry of National Education and the Ecole Normale Supérieure of Lyon for a PhD fellowship. The authors also thank I.M. Dixon for comments on the manuscript. This paper is dedicated to the 70th birthday of Karl-Heinz Rieder and to the 60th birthday of François Diederich.

Author information

Authors and Affiliations



S.W.H., C.J. and G.R. conceived and designed the research project. U.G.E.P., H.K. and Y.Z performed the STM experiments. F.A., M.G. and C.J. performed calculations. J.E. and C.J. developed the theory. G.V. and G.R. synthesized the molecules. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to G. Rapenne, C. Joachim or S-W. Hla.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1081 kb)

Supplementary movie S1

Supplementary movie S1 (AVI 4120 kb)

Supplementary movie S2

Supplementary movie S2 (AVI 5812 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Perera, U., Ample, F., Kersell, H. et al. Controlled clockwise and anticlockwise rotational switching of a molecular motor. Nature Nanotech 8, 46–51 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research