Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Growth of a two-dimensional dielectric monolayer on quasi-freestanding graphene

Abstract

Integrating graphene into device architectures requires interfacing graphene with dielectric materials1,2,3. However, the dewetting and thermal instability of dielectric layers on top of graphene makes fabricating continuous graphene/dielectric interfaces challenging4,5,6,7,8,9. Here, we show that yttria (Y2O3)—a high-κ dielectric—can form a complete monolayer on platinum-supported graphene. The monolayer interacts weakly with graphene, but is stable to high temperatures. Scanning tunnelling microscopy reveals that the yttria layer exhibits a two-dimensional hexagonal lattice rotated by 30° relative to the hexagonal graphene lattice. X-ray photoemission spectroscopy measurements indicate a shift of the Fermi level in graphene on yttria deposition, which suggests that dielectric layers could be used for charge doping of metal-supported graphene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AES and XPS of yttria growth on graphene/Pt(111).
Figure 2: STM images of yttria overlayer on graphene/Pt(111).
Figure 3: High-resolution STM studies of yttria monolayer structure.

Similar content being viewed by others

References

  1. Robinson, J. A. et al. Epitaxial graphene materials integration: effects of dielectric overlayers on structural and electronic properties. ACS Nano 4, 2667–2672 (2010).

    Article  CAS  Google Scholar 

  2. Zhu, W. J., Neumayer, D., Perebeinos, V. & Avouris, P. Silicon nitride gate dielectrics and band gap engineering in graphene layers. Nano Lett. 10, 3572–3576 (2010).

    Article  CAS  Google Scholar 

  3. Farmer, D. B. et al. Utilization of a buffered dielectric to achieve high field-effect carrier mobility in graphene transistors. Nano Lett. 9, 4474–4478 (2009).

    Article  CAS  Google Scholar 

  4. Garces, N. Y. et al. Epitaxial graphene surface preparation for atomic layer deposition of Al2O3 . J. Appl. Phys. 109, 124304 (2011).

    Article  Google Scholar 

  5. Wheeler, V. et al. Fluorine functionalization of epitaxial graphene for uniform deposition of thin high-kappa dielectrics. Carbon 50, 2307–2314 (2012).

    Article  CAS  Google Scholar 

  6. Jandhyala, S. et al. Atomic layer deposition of dielectrics on graphene using reversibly physisorbed ozone. ACS Nano 6, 2722–2730 (2012).

    Article  CAS  Google Scholar 

  7. Alaboson, J. M. P. et al. Seeding atomic layer deposition of high-k dielectrics on epitaxial graphene with organic self-assembled monolayers. ACS Nano 5, 5223–5232 (2011).

    Article  CAS  Google Scholar 

  8. Fallahazad, B. et al. Scaling of Al2O3 dielectric for graphene field-effect transistors Appl. Phys. Lett. 100, 093112 (2012).

    Article  Google Scholar 

  9. Han, W. et al. Spin transport and relaxation in graphene J. Magn. Magn. Mater. 324, 369–381 (2012).

    Article  CAS  Google Scholar 

  10. Lui, C. H., Liu, L., Mak, K. F., Flynn, G. W. & Heinz, T. F. Ultraflat graphene. Nature 462, 339–341 (2009).

    Article  CAS  Google Scholar 

  11. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010).

    Article  CAS  Google Scholar 

  12. Xue, J. M. et al. Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nature Mater. 10, 282–285 (2011).

    Article  CAS  Google Scholar 

  13. Decker, R. et al. Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy. Nano Lett. 11, 2291–2295 (2011).

    Article  CAS  Google Scholar 

  14. Novoselov, K. S. et al. Two-dimensional atomic crystals Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  CAS  Google Scholar 

  15. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis A. Single-layer MoS2 transistors. Nature Nanotech. 6, 147–150 (2011).

    Article  CAS  Google Scholar 

  16. Xu, H. et al. Quantum capacitance limited vertical scaling of graphene field-effect transistor. ACS Nano 5, 2340–2347 (2011).

    Article  CAS  Google Scholar 

  17. Xu, H. et al. Top-gated graphene field-effect transistors with high normalized transconductance and designable Dirac point voltage. ACS Nano 5, 5031–5037 (2011).

    Article  CAS  Google Scholar 

  18. Batzill, M. The surface science of graphene: metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects. Surf. Sci. Rep. 67, 83–115 (2012).

    Article  CAS  Google Scholar 

  19. Sutter, P., Sadowski, J. T. & Sutter E. Graphene on Pt(111): growth and substrate interaction. Phys. Rev. B 80, 245411 (2009).

    Article  Google Scholar 

  20. Giovannetti, G. Doping graphene with metal contacts. Phys. Rev. Lett. 101, 026803 (2008).

    Article  CAS  Google Scholar 

  21. Politano, A., Marino, A. R., Formoso, V. & Chiarello, G. Evidence of Kohn anomalies in quasi-freestanding graphene on Pt(111). Carbon 50, 734–736 (2011).

    Article  Google Scholar 

  22. Li, X. S. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    Article  CAS  Google Scholar 

  23. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotech. 5, 574–578 (2010).

    Article  CAS  Google Scholar 

  24. Merino, P., Svec, M., Pinnardi, A. L., Otero, G. & Martin-Gago, J. A. Strain-driven moire superstructures of epitaxial graphene on transition metal surfaces. ACS Nano 5, 5627–5634 (2011).

    Article  CAS  Google Scholar 

  25. Gao, M. et al. Epitaxial growth and structural property of graphene on Pt(111). Appl. Phys. Lett. 98, 033101 (2011).

    Article  Google Scholar 

  26. Rey, S. & Le Normand, F. Surface transformations of carbon (graphene, graphite, diamond, carbide), deposited on polycrystalline nickel by hot filaments chemical vapour deposition. Thin Solid Films 519, 4426–4428 (2011).

    Article  CAS  Google Scholar 

  27. Tao, J. & Batzill, M. Ultrathin Y2O3(111) films on Pt(111) substrates. Surf. Sci. 605, 1826–1833 (2011).

    Article  CAS  Google Scholar 

  28. Freeman, C. L., Claeyssens, F., Allan, N. L. & Harding, J. H. Graphitic nanofilms as precursors to wurtzite films: theory. Phys. Rev. Lett. 96, 066102 (2006).

    Article  Google Scholar 

  29. Chen, Q., Hu, H., Chen, X. & Wang J. Tailoring band gap in GaN sheet by chemical modification and electric field: ab initio calculations. Appl. Phys. Lett. 98, 053102 (2011).

    Article  Google Scholar 

  30. Tusche, C., Meyerheim, H. L. & Kirschner J. Observation of depolarized ZnO(0001) monolayers: formation of unreconstructed planar sheets. Phys. Rev. Lett. 99, 026102 (2007).

    Article  CAS  Google Scholar 

  31. Orzali, T., Casarin, M., Granozzi, G., Sambi, M. & Vittadini, A. Bottom-up assembly of single-domain titania nanosheets on (1×2)-Pt(110). Phys. Rev. Lett. 97, 156101 (2006).

    Article  Google Scholar 

  32. Surnev, S. et al. Growth and structure of ultrathin vanadium oxide layers on Pd(111). Phys. Rev. B 61, 13945 (2000).

    Article  CAS  Google Scholar 

  33. Belonoshko, A. B., Gutierrez, G., Ahuja, R. & Johansson, B. Molecular dynamics simulation of the structure of yttria Y2O3 phases using pairwise interactions. Phys. Rev. B 64, 184103 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Office of Naval Research (N00014-10-1-0668 and N00014-11-1-0779) and the National Science Foundation (DMR-1204924).

Author information

Authors and Affiliations

Authors

Contributions

R.A. performed STM and XPS experiments, analysed the data, and prepared figures. A.D. performed and analysed Auger measurements. M.B. conceived the experiment and wrote the manuscript.

Corresponding author

Correspondence to Matthias Batzill.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2514 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Addou, R., Dahal, A. & Batzill, M. Growth of a two-dimensional dielectric monolayer on quasi-freestanding graphene. Nature Nanotech 8, 41–45 (2013). https://doi.org/10.1038/nnano.2012.217

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.217

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing