Review Article | Published:

Electronics and optoelectronics of two-dimensional transition metal dichalcogenides

Nature Nanotechnology volume 7, pages 699712 (2012) | Download Citation

Abstract

The remarkable properties of graphene have renewed interest in inorganic, two-dimensional materials with unique electronic and optical attributes. Transition metal dichalcogenides (TMDCs) are layered materials with strong in-plane bonding and weak out-of-plane interactions enabling exfoliation into two-dimensional layers of single unit cell thickness. Although TMDCs have been studied for decades, recent advances in nanoscale materials characterization and device fabrication have opened up new opportunities for two-dimensional layers of thin TMDCs in nanoelectronics and optoelectronics. TMDCs such as MoS2, MoSe2, WS2 and WSe2 have sizable bandgaps that change from indirect to direct in single layers, allowing applications such as transistors, photodetectors and electroluminescent devices. We review the historical development of TMDCs, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

  2. 2.

    , , , & The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

  3. 3.

    Graphene: status and prospects. Science 324, 1530–1534 (2009).

  4. 4.

    et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008).

  5. 5.

    et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 11, 2396–2399 (2011).

  6. 6.

    et al. Impermeable atomic membranes from graphene sheets. Nano Lett. 8, 2458–2462 (2008).

  7. 7.

    , , , & Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 335, 442–444 (2012).

  8. 8.

    Band structures of transition-metal-dichalcogenide layer compounds. Phys. Rev. B 8, 3719–3740 (1973).

  9. 9.

    & Transition metal dichalcogenides: discussion and interpretation of observed optical, electrical and structural properties. Adv. Phys. 18, 193–335 (1969).

  10. 10.

    & Two-dimensional dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks. Adv. Mater. 24, 210–228 (2012).

  11. 11.

    , , & Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides. J. Appl. Phys. 101, 014507 (2007).

  12. 12.

    et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010).

  13. 13.

    , , & The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett. 92, (2008).

  14. 14.

    Layer compounds. Annu. Rev. Mater. Sci. 3, 147–170 (1993).

  15. 15.

    Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems. Adv. Phys. 42, 173–266 (1993).

  16. 16.

    et al. Dirac cones reshaped by interaction effects in suspended graphene. Nature Phys. 7, 701–704 (2011).

  17. 17.

    et al. Room-temperature high on/off ratio in suspended graphene nanoribbon field-effect transistors. Nanotechnology 22, 265201 (2011).

  18. 18.

    , , , & Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008).

  19. 19.

    , , & Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).

  20. 20.

    et al. Bandgap opening in graphene induced by patterned hydrogen adsorption. Nature Mater. 9, 315–319 (2010).

  21. 21.

    et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).

  22. 22.

    et al. From Mott state to superconductivity in 1T-TaS2. Nature Mater. 7, 960–965 (2008).

  23. 23.

    , & Charge-density waves and superlattices in metallic layered transition-metal dichalcogenides. Adv. Phys. 24, 117–201 (1975).

  24. 24.

    Charge density wave, superconductivity, and anomalous metallic behavior in 2D transition metal dichalcogenides. Phys. Rev. Lett. 86, 4382–4385 (2001).

  25. 25.

    , & Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 83, 245213 (2011).

  26. 26.

    , , & Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotech. 7, 494–498 (2012).

  27. 27.

    , , , & Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotech. 7, 490–493 (2012).

  28. 28.

    et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature Commun. 3, 887 (2012).

  29. 29.

    et al. Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy. Phys. Rev. B 80, 155425 (2009).

  30. 30.

    et al. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4, 2695–2700 (2010).

  31. 31.

    , , , & Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

  32. 32.

    et al. Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010).

  33. 33.

    , & Stretching and breaking of ultrathin MoS2. ACS Nano 5, 9703–9709 (2011).

  34. 34.

    , , , & Single-layer MoS2 transistors. Nature Nanotech. 6, 147–150 (2011).

  35. 35.

    , & Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 5, 9934–9938 (2011).

  36. 36.

    et al. Visibility of dichalcogenide nanolayers. Nanotechnology 22, 125706 (2011).

  37. 37.

    et al. Optical identification of single- and few-layer MoS2 sheets. Small 8, 682–686 (2012).

  38. 38.

    et al. Synthesis of atomically thin WO3 sheets from hydrated tungsten trioxide. Chem. Mater. 22, 5660–5666 (2010).

  39. 39.

    et al. Single-layer MoS2 phototransistors. ACS Nano 6, 74–80 (2012).

  40. 40.

    et al. Giant moisture responsiveness of VS2 ultrathin nanosheets for novel touchless positioning interface. Adv. Mater. 24, 1969–1974 (2012).

  41. 41.

    , , & Ambipolar MoS2 thin flake transistors. Nano Lett. 12, 1136–1140 (2012).

  42. 42.

    et al. Laser-thinning of MoS2: on demand generation of a single-layer semiconductor. Nano Lett. 12, 3187–3192 (2012).

  43. 43.

    et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011).

  44. 44.

    et al. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater. 23, 3944–3948 (2011).

  45. 45.

    et al. Flexible gigahertz transistors derived from solution-based single-layer graphene. Nano Lett. 12, 1184–1188 (2012).

  46. 46.

    , & Toward pillared layered metal sulfides. intercalation of the chalcogenide clusters Co6Q8(PR3)6 (Q = S, Se, and Te and R = Alkyl) into MoS2. Chem. Mater. 8, 318–320 (1996).

  47. 47.

    , & Single-layer MoS2. Mater. Res. Bull. 21, 457–461 (1986).

  48. 48.

    & Exfoliated oxide nanosheets: new solution to nanoelectronics. J. Mater. Chem. 19, 2503–2511 (2009).

  49. 49.

    et al. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11, 5111–5116 (2011).

  50. 50.

    et al. Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem. Int. Ed. 50, 11093–11097 (2011).

  51. 51.

    Lithium intercalation via n-butyllithium of layered transition-metal dichalcogenides. Mater. Res. Bull. 10, 287–291 (1975).

  52. 52.

    , , , & Exfoliated−restacked phase of WS2. Chem. Mater. 9, 879–882 (1997).

  53. 53.

    , , , & Solution-processed anodes from layer-structure materials for high-efficiency polymer light-emitting diodes. J. Am. Chem. Soc. 125, 5998–6007 (2003).

  54. 54.

    , , & Encapsulation of polymers into MoS2 and metal to insulator transition in metastable MoS2. J. Chem. Soc. Chem. Commun. 1582–1585 (1993).

  55. 55.

    , , , & Structures of exfoliated single layers of WS2, MoS2, and MoSe2 in aqueous suspension. Phys. Rev. B 65, (2002).

  56. 56.

    , , , & Self-assembled lamellar MoS2, SnS2 and SiO2 semiconducting polymer nanocomposites. Phil. Trans. R. Soc. A 365, 1489–1508 (2007).

  57. 57.

    et al. An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angew. Chem. Int. Ed. 51, 9052–9056 (2012).

  58. 58.

    , , , & Zhang, H-L. A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. Angew. Chem. Int. Ed. 50, 10839–10842 (2011).

  59. 59.

    , , & Role of solubility parameters in understanding the steric stabilization of exfoliated two-dimensional nanosheets by adsorbed polymers. J. Phys. Chem. C 116, 11393–11400 (2012).

  60. 60.

    et al. Solvent Exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds. ACS Nano 6, 3468–3480 (2012).

  61. 61.

    , & Adsorption of volatile organic compounds onto carbon nanotubes, carbon nanofibers, and high-surface-area graphites. J. Colloid Interface Sci. 305, 7–16 (2007).

  62. 62.

    et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotech. 3, 563–568 (2008).

  63. 63.

    et al. Bi- and trilayer graphene solutions. Nature Nanotech. 6, 439–445 (2011).

  64. 64.

    & Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett. 9, 4031–4036 (2009).

  65. 65.

    , & Preparation of high concentration dispersions of exfoliated MoS2 with increased flake size. Chem. Mater. 24, 2414–2421 (2012).

  66. 66.

    et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

  67. 67.

    , & The growth and morphology of epitaxial multilayer graphene. J. Phys. Condens. Matter 20, (2008).

  68. 68.

    et al. State-of-the-art graphene high-frequency electronics. Nano Lett. 12, 3062–3067 (2012).

  69. 69.

    et al. High-frequency, scaled graphene transistors on diamond-like carbon. Nature 472, 74–78 (2011).

  70. 70.

    et al. Wafer-scale graphene integrated circuit. Science 332, 1294–1297 (2011).

  71. 71.

    et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012).

  72. 72.

    , , , & Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8, 966–971 (2012).

  73. 73.

    et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12, 1538–1544 (2012).

  74. 74.

    et al. Atomically thin layers of MoS2 via a two step thermal evaporation-exfoliation method. Nanoscale 4, 461–466 (2012).

  75. 75.

    et al. Van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 12, 2784–2791 (2012).

  76. 76.

    et al. Hydrothermal synthesis of MoS2 and its pressure-related crystallization. J. Solid State Chem. 159, 170–173 (2001).

  77. 77.

    et al. Hydrothermal synthesis and characterization of single-molecular-layer MoS2 and MoSe2. Chem. Lett. 30, 772–773 (2001).

  78. 78.

    et al. MoS2 and WS2 Analogues of graphene. Angew. Chem. Int. Ed. 49, 4059–4062 (2010).

  79. 79.

    , , & Graphene analogues of layered metal selenides. Dalton Trans. 40, 10322–10325 (2011).

  80. 80.

    & Electronic structure and scanning-tunneling-microscopy image of molybdenum dichalcogenide surfaces. Phys. Rev. B 51, 17085–17095 (1995).

  81. 81.

    & Electronic properties of MoS2 nanoparticles. J. Phys. Chem. C 111, 16192–16196 (2007).

  82. 82.

    , , & Performance limits of monolayer transition metal dichalcogenide transistors. IEEE Trans. Electron Devices 58, 3042–3047 (2011).

  83. 83.

    et al. First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers. Physica B 406, 2254–2260 (2011).

  84. 84.

    , & Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J. Phys. Chem. C 116, 8983–8999 (2012).

  85. 85.

    & Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B 79, 115409 (2009).

  86. 86.

    The optical properties of single crystals of WSe2 and MoTe2. J. Phys. Chem. Solids 24, 1107–1108 (1963).

  87. 87.

    & Physical properties of layer structures: optical properties and photoconductivity of thin crystals of molybdenum disulphide. Proc. R. Soc. Lond. A 273, 69–83 (1963).

  88. 88.

    & Detailed photocurrent spectroscopy of the semiconducting group-VI transition-metal dichalcogenides. J. Phys. Chem. 86, 463–467 (1982).

  89. 89.

    et al. One-dimensional metallic edge states in MoS2. Phys. Rev. Lett. 87, 196803 (2001).

  90. 90.

    et al. Band structure of MoS2, MoSe2, and α-MoTe2: angle-resolved photoelectron spectroscopy and ab initio calculations. Phys. Rev. B 64, 235305 (2001).

  91. 91.

    Graphene transistors. Nature Nanotech. 5, 487–496 (2010).

  92. 92.

    The International Technology Roadmap for Semiconductors. (Semiconductor Industry Association, 2011).

  93. 93.

    & Physics of Semiconductor Devices (Wiley, 2007).

  94. 94.

    et al. Large-band-gap SiC, III–V nitride, and II–VI ZnSe-based semiconductor device technologies. J. Appl. Phys. 76, 1363–1398 (1994).

  95. 95.

    , & Carbon-based electronics. Nature Nanotech. 2, 605–615 (2007).

  96. 96.

    , & Carbon-nanotube photonics and optoelectronics. Nature Photon. 2, 341–350 (2008).

  97. 97.

    & Nanoelectronics from the bottom up. Nature Mater. 6, 841–850 (2007).

  98. 98.

    , & How good can monolayer MoS2 transistors be? Nano Lett. 11, 3768–3773 (2011).

  99. 99.

    Multiple-gate SOI MOSFETs. Solid State Electron. 48, 897–905 (2004).

  100. 100.

    , & Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437–672 (1982).

  101. 101.

    The electron-phonon interaction in quasi-two-dimensional semiconductor quantum-well structures. J. Phys. C 15, 5899 (1982).

  102. 102.

    , , , & S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature Nanotech. 3, 206–209 (2008).

  103. 103.

    , & Scattering mechanisms and Boltzmann transport in graphene. Physica E 40, 1022–1025 (2008).

  104. 104.

    , S. & W. Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 85, 115317 (2012).

  105. 105.

    , & Carrier transport in two-dimensional graphene layers. Phys. Rev. Lett. 98, 186806 (2007).

  106. 106.

    & Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering. Phys. Rev. Lett. 98, 136805 (2007).

  107. 107.

    , & Effect of high-κ gate dielectrics on charge transport in graphene-based field effect transistors. Phys. Rev. B 82, 115452 (2010).

  108. 108.

    et al. Effect of a high-κ environment on charge carrier mobility in graphene. Phys. Rev. Lett. 102, 206603 (2009).

  109. 109.

    , , & Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene. Phys. Rev. B 80, 235402 (2009).

  110. 110.

    et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nature Commun. 3, 1011 (2012).

  111. 111.

    , , , & Interface roughness scattering in GaAs/AlAs quantum wells. Appl. Phys. Lett. 51, 1934–1936 (1987).

  112. 112.

    et al. Limits on charge carrier mobility in suspended graphene due to flexural phonons. Phys. Rev. Lett. 105, 266601 (2010).

  113. 113.

    , & Ripples and layers in ultrathin MoS2 membranes. Nano Lett. 11, 5148–5153 (2011).

  114. 114.

    & Mobility of charge carriers in semiconducting layer structures. Phys. Rev. 163, 743–755 (1967).

  115. 115.

    , E., , & High-mobility field-effect transistors based on transition metal dichalcogenides. Appl. Phys. Lett. 84, 3301–3303 (2004).

  116. 116.

    , S., , T. & I. Probing charge scattering mechanisms in suspended graphene by varying its dielectric environment. Nature Commun. 3, 734 (2012).

  117. 117.

    , , K. & Dielectric screening enhanced performance in graphene FET. Nano Lett. 9, 2571–2574 (2009).

  118. 118.

    et al. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 12, 3788–3792 (2012).

  119. 119.

    et al. Electrical characteristics of molybdenum disulfide flakes produced by liquid exfoliation. Adv. Mater. 23, 4178–4182 (2011).

  120. 120.

    & Fundamentals of Digital Logic with VHDL Design. (McGraw-Hill, 2008).

  121. 121.

    et al. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 12, 4674–4680 (2012).

  122. 122.

    et al. Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small 8, 2994–2999 (2012).

  123. 123.

    et al. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 12, 4013–4017 (2012).

  124. 124.

    , , N. & T. High electron mobility transistor based on a GaN–AlxGa1–xN heterojunction. Appl. Phys. Lett. 63, 1214–1215 (1993).

  125. 125.

    et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012).

  126. 126.

    & Excitons in nanoscale systems. Nature Mater. 5, 683–696 (2006).

  127. 127.

    Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 112, 18737–18753 (2008).

  128. 128.

    , & D. Semiconductor nanowires and nanotubes. Annu. Rev. Mater. Res. 34, 83–122 (2004).

  129. 129.

    , & A. Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps. Phys. Rev. B 35, 6203–6206 (1987).

  130. 130.

    Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B 86, 115409 (2012).

  131. 131.

    & R. L. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Phys. Rev. B 85, 205302 (2012).

  132. 132.

    & Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 84, 155413 (2011).

  133. 133.

    et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).

  134. 134.

    et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotech. 5, 574–578 (2010).

  135. 135.

    , , & Graphene photonics and optoelectronics. Nature Photon. 4, 611–622 (2010).

  136. 136.

    , & Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323–327 (2007).

  137. 137.

    et al. Abundant non-toxic materials for thin film solar cells: alternative to conventional materials. Renew. Energy 36, 2753–2758 (2011).

  138. 138.

    , & The reflectivity spectra of some group VA transition metal dichalcogenides. J. Phys. C 8, 4236 (1975).

  139. 139.

    , , & Electrodeposited semiconducting molybdenum selenide films. II. Optical, electrical, electrochemical and photoelectrochemical solar cell studies. J. Phys. D: Appl. Phys. 17, 2125 (1984).

  140. 140.

    et al. Work function and photothreshold of layered metal dichalcogenides. Jpn. J. Appl. Phys. 33, 2696.

  141. 141.

    & Electronic-properties of intercalation complexes of the transition-metal dichalcogenides. Adv. Phys. 36, 1–94 (1987).

  142. 142.

    , , & Intercalation chemistry of molybdenum disulfide. Coord. Chem. Rev. 224, 87–109 (2002).

  143. 143.

    et al. MS2 (M = W, Mo) photosensitive thin films for solar cells. Sol. Energ. Mater. Sol. Cells 46, 115–121 (1997).

  144. 144.

    et al. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 12, 446–701 (2012).

  145. 145.

    , , & Molybdenum disulphide/titanium dioxide nanocomposite-poly 3-hexylthiophene bulk heterojunction solar cell. Appl. Phys. Lett. 100, 153901–153904 (2012).

  146. 146.

    & Photosensitization of nanostructured TiO2 with WS2 quantum sheets. J. Phys. Chem. B 110, 12167–12171 (2006).

  147. 147.

    , , , & Preparation and photocatalytic behavior of MoS2 and WS2 nanocluster sensitized TiO2. Langmuir 20, 5865–5869 (2004).

  148. 148.

    , , , & Inorganic solution-processed hole-injecting and electron-blocking layers in polymer light-emitting diodes. J. Appl. Phys. 92, 7556–7563 (2002).

  149. 149.

    & Photonic design principles for ultrahigh-efficiency photovoltaics. Nature Mater. 11, 174–177 (2012).

  150. 150.

    et al. Making graphene luminescent by oxygen plasma treatment. ACS Nano 3, 3963–3968 (2009).

  151. 151.

    et al. Blue photoluminescence from chemically derived graphene oxide. Adv. Mater. 22, 505–509 (2010).

  152. 152.

    et al. Light emission from spectral analysis of Au/MoS2 nanocontacts stimulated by scanning tunneling microscopy. Phys. Rev. B 66, 045401 (2002).

  153. 153.

    , , , & Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

  154. 154.

    , & Giant spin–orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys. Rev. B 84, 153402 (2011).

  155. 155.

    , & Valley filter and valley valve in graphene. Nature Phys. 3, 172–175 (2007).

  156. 156.

    , & Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007).

  157. 157.

    et al. Detection of individual gas molecules adsorbed on graphene. Nature Mater. 6, 652–655 (2007).

  158. 158.

    et al. Practical chemical sensors from chemically derived graphene. ACS Nano 3, 301–306 (2009).

  159. 159.

    , , , & Intrinsic response of graphene vapor sensors. Nano Lett. 9, 1472–1475 (2009).

  160. 160.

    , & Lattice dynamics of lithium intercalated MoS2. Solid State Ionics 48, 225–229 (1991).

  161. 161.

    et al. Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 8, 63–67 (2012).

  162. 162.

    , , , & Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 6, 5635–5641 (2012).

  163. 163.

    et al. Electrochemically reduced single-layer MoS2 nanosheets: characterization, properties, and sensing applications. Small 8, 2264–2270 (2012).

  164. 164.

    , & Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 24, 117–201 (1975).

  165. 165.

    Gmelin Handbook of Inorganic and Organometallic Chemistry 8th edn, Vol. B7 (Springer, 1995).

Download references

Author information

Affiliations

  1. Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA

    • Qing Hua Wang
    •  & Michael S. Strano
  2. School of Electrical and Computer Engineering, RMIT University, Melbourne, Victoria, Australia

    • Kourosh Kalantar-Zadeh
  3. Electrical Engineering Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

    • Andras Kis
  4. School of Physics, Trinity College Dublin, Dublin 2, Ireland

    • Jonathan N. Coleman
  5. Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland

    • Jonathan N. Coleman

Authors

  1. Search for Qing Hua Wang in:

  2. Search for Kourosh Kalantar-Zadeh in:

  3. Search for Andras Kis in:

  4. Search for Jonathan N. Coleman in:

  5. Search for Michael S. Strano in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Michael S. Strano.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nnano.2012.193

Further reading