Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electronics and optoelectronics of two-dimensional transition metal dichalcogenides

Abstract

The remarkable properties of graphene have renewed interest in inorganic, two-dimensional materials with unique electronic and optical attributes. Transition metal dichalcogenides (TMDCs) are layered materials with strong in-plane bonding and weak out-of-plane interactions enabling exfoliation into two-dimensional layers of single unit cell thickness. Although TMDCs have been studied for decades, recent advances in nanoscale materials characterization and device fabrication have opened up new opportunities for two-dimensional layers of thin TMDCs in nanoelectronics and optoelectronics. TMDCs such as MoS2, MoSe2, WS2 and WSe2 have sizable bandgaps that change from indirect to direct in single layers, allowing applications such as transistors, photodetectors and electroluminescent devices. We review the historical development of TMDCs, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Structure of TMDC materials.
Figure 2: Methods for synthesizing TMDC layers.
Figure 3: Electronic properties and transport in TMDCs.
Figure 5: Optical and vibrational properties.
Figure 4: Electronic devices from thin flakes of MoS2.
Figure 6: Current and proposed optoelectronic devices.

References

  1. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  CAS  Google Scholar 

  2. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    CAS  Google Scholar 

  3. Geim, A. K. Graphene: status and prospects. Science 324, 1530–1534 (2009).

    Article  CAS  Google Scholar 

  4. Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008).

    CAS  Google Scholar 

  5. Mayorov, A. S. et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 11, 2396–2399 (2011).

    CAS  Google Scholar 

  6. Bunch, J. S. et al. Impermeable atomic membranes from graphene sheets. Nano Lett. 8, 2458–2462 (2008).

    CAS  Google Scholar 

  7. Nair, R. R., Wu, H. A., Jayaram, P. N., Grigorieva, I. V. & Geim, A. K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 335, 442–444 (2012).

    CAS  Google Scholar 

  8. Mattheis, L. F. Band structures of transition-metal-dichalcogenide layer compounds. Phys. Rev. B 8, 3719–3740 (1973).

    Google Scholar 

  9. Wilson, J. A. & Yoffe, A. D. Transition metal dichalcogenides: discussion and interpretation of observed optical, electrical and structural properties. Adv. Phys. 18, 193–335 (1969).

    Article  CAS  Google Scholar 

  10. Osada, M. & Sasaki, T. Two-dimensional dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks. Adv. Mater. 24, 210–228 (2012).

    CAS  Google Scholar 

  11. Ayari, A., Cobas, E., Ogundadegbe, O. & Fuhrer, M. S. Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides. J. Appl. Phys. 101, 014507 (2007).

    Google Scholar 

  12. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010).

    CAS  Google Scholar 

  13. Pacile, D., Meyer, J. C., Girit, C. O. & Zettl, A. The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett. 92, (2008).

  14. Yoffe, A. D. Layer compounds. Annu. Rev. Mater. Sci. 3, 147–170 (1993).

    Google Scholar 

  15. Yoffe, A. D. Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems. Adv. Phys. 42, 173–266 (1993).

    CAS  Google Scholar 

  16. Elias, D. C. et al. Dirac cones reshaped by interaction effects in suspended graphene. Nature Phys. 7, 701–704 (2011).

    CAS  Google Scholar 

  17. Lin, M-W. et al. Room-temperature high on/off ratio in suspended graphene nanoribbon field-effect transistors. Nanotechnology 22, 265201 (2011).

    Google Scholar 

  18. Li, X., Wang, X., Zhang, L., Lee, S. & Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008).

    CAS  Google Scholar 

  19. Han, M. Y., Özyilmaz, B., Zhang, Y. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).

    Google Scholar 

  20. Balog, R. et al. Bandgap opening in graphene induced by patterned hydrogen adsorption. Nature Mater. 9, 315–319 (2010).

    CAS  Google Scholar 

  21. Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).

    CAS  Google Scholar 

  22. Sipos, B. et al. From Mott state to superconductivity in 1T-TaS2 . Nature Mater. 7, 960–965 (2008).

    CAS  Google Scholar 

  23. Wilson, J. A., Disalvo, F. J. & Mahajan, S. Charge-density waves and superlattices in metallic layered transition-metal dichalcogenides. Adv. Phys. 24, 117–201 (1975).

    CAS  Google Scholar 

  24. Castro Neto, A. H. Charge density wave, superconductivity, and anomalous metallic behavior in 2D transition metal dichalcogenides. Phys. Rev. Lett. 86, 4382–4385 (2001).

    CAS  Google Scholar 

  25. Kuc, A., Zibouche, N. & Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2 . Phys. Rev. B 83, 245213 (2011).

    Google Scholar 

  26. Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotech. 7, 494–498 (2012).

    CAS  Google Scholar 

  27. Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotech. 7, 490–493 (2012).

    CAS  Google Scholar 

  28. Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature Commun. 3, 887 (2012).

    Google Scholar 

  29. Alem, N. et al. Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy. Phys. Rev. B 80, 155425 (2009).

    Google Scholar 

  30. Lee, C. et al. Anomalous lattice vibrations of single- and few-layer MoS2 . ACS Nano 4, 2695–2700 (2010).

    Article  CAS  Google Scholar 

  31. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Google Scholar 

  32. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

    Article  CAS  Google Scholar 

  33. Bertolazzi, S., Brivio, J. & Kis, A. Stretching and breaking of ultrathin MoS2 . ACS Nano 5, 9703–9709 (2011).

    CAS  Google Scholar 

  34. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nature Nanotech. 6, 147–150 (2011).

    CAS  Google Scholar 

  35. Radisavljevic, B., Whitwick, M. B. & Kis, A. Integrated circuits and logic operations based on single-layer MoS2 . ACS Nano 5, 9934–9938 (2011).

    CAS  Google Scholar 

  36. Benameur, M. M. et al. Visibility of dichalcogenide nanolayers. Nanotechnology 22, 125706 (2011).

    CAS  Google Scholar 

  37. Li, H. et al. Optical identification of single- and few-layer MoS2 sheets. Small 8, 682–686 (2012).

    CAS  Google Scholar 

  38. Kalantar-Zadeh, K. et al. Synthesis of atomically thin WO3 sheets from hydrated tungsten trioxide. Chem. Mater. 22, 5660–5666 (2010).

    CAS  Google Scholar 

  39. Yin, Z. et al. Single-layer MoS2 phototransistors. ACS Nano 6, 74–80 (2012).

    CAS  Google Scholar 

  40. Feng, J. et al. Giant moisture responsiveness of VS2 ultrathin nanosheets for novel touchless positioning interface. Adv. Mater. 24, 1969–1974 (2012).

    CAS  Google Scholar 

  41. Zhang, Y., Ye, J., Matsuhashi, Y. & Iwasa, Y. Ambipolar MoS2 thin flake transistors. Nano Lett. 12, 1136–1140 (2012).

    CAS  Google Scholar 

  42. Castellanos-Gomez, A. et al. Laser-thinning of MoS2: on demand generation of a single-layer semiconductor. Nano Lett. 12, 3187–3192 (2012).

    CAS  Google Scholar 

  43. Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011).

    CAS  Google Scholar 

  44. Smith, R. J. et al. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater. 23, 3944–3948 (2011).

    CAS  Google Scholar 

  45. Sire, C. d. et al. Flexible gigahertz transistors derived from solution-based single-layer graphene. Nano Lett. 12, 1184–1188 (2012).

    CAS  Google Scholar 

  46. Bissessur, R., Heising, J. & Hirpo, W. Toward pillared layered metal sulfides. intercalation of the chalcogenide clusters Co6Q8(PR3)6 (Q = S, Se, and Te and R = Alkyl) into MoS2 . Chem. Mater. 8, 318–320 (1996).

    CAS  Google Scholar 

  47. Joensen, P., Frindt, R. F. & Morrison, S. R. Single-layer MoS2 . Mater. Res. Bull. 21, 457–461 (1986).

    CAS  Google Scholar 

  48. Osada, M. & Sasaki, T. Exfoliated oxide nanosheets: new solution to nanoelectronics. J. Mater. Chem. 19, 2503–2511 (2009).

    CAS  Google Scholar 

  49. Eda, G. et al. Photoluminescence from chemically exfoliated MoS2 . Nano Lett. 11, 5111–5116 (2011).

    CAS  Google Scholar 

  50. Zeng, Z. Y. et al. Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem. Int. Ed. 50, 11093–11097 (2011).

    CAS  Google Scholar 

  51. Dines, M. B. Lithium intercalation via n-butyllithium of layered transition-metal dichalcogenides. Mater. Res. Bull. 10, 287–291 (1975).

    CAS  Google Scholar 

  52. Tsai, H-L., Heising, J., Schindler, J. L., Kannewurf, C. R. & Kanatzidis, M. G. Exfoliated−restacked phase of WS2 . Chem. Mater. 9, 879–882 (1997).

    CAS  Google Scholar 

  53. Frey, G. L., Reynolds, K. J., Friend, R. H., Cohen, H. & Feldman, Y. Solution-processed anodes from layer-structure materials for high-efficiency polymer light-emitting diodes. J. Am. Chem. Soc. 125, 5998–6007 (2003).

    CAS  Google Scholar 

  54. Bissessur, R., Kanatzidis, M. G., Schindler, J. L. & Kannewurf, C. R. Encapsulation of polymers into MoS2 and metal to insulator transition in metastable MoS2 . J. Chem. Soc. Chem. Commun. 1582–1585 (1993).

  55. Gordon, R. A., Yang, D., Crozier, E. D., Jiang, D. T. & Frindt, R. F. Structures of exfoliated single layers of WS2, MoS2, and MoSe2 in aqueous suspension. Phys. Rev. B 65, (2002).

  56. Kirmayer, S., Aharon, E., Dovgolevsky, E., Kalina, M. & Frey, G. L. Self-assembled lamellar MoS2, SnS2 and SiO2 semiconducting polymer nanocomposites. Phil. Trans. R. Soc. A 365, 1489–1508 (2007).

    CAS  Google Scholar 

  57. Zeng, Z. et al. An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angew. Chem. Int. Ed. 51, 9052–9056 (2012).

    CAS  Google Scholar 

  58. Zhou, K-G., Mao, N-N., Wang, H-X., Peng, Y. & Zhang, H-L. A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. Angew. Chem. Int. Ed. 50, 10839–10842 (2011).

    CAS  Google Scholar 

  59. May, P., Khan, U., Hughes, J. M. & Coleman, J. N. Role of solubility parameters in understanding the steric stabilization of exfoliated two-dimensional nanosheets by adsorbed polymers. J. Phys. Chem. C 116, 11393–11400 (2012).

    CAS  Google Scholar 

  60. Cunningham, G. et al. Solvent Exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds. ACS Nano 6, 3468–3480 (2012).

    CAS  Google Scholar 

  61. Díaz, E., Ordóñez, S. & Vega, A. Adsorption of volatile organic compounds onto carbon nanotubes, carbon nanofibers, and high-surface-area graphites. J. Colloid Interface Sci. 305, 7–16 (2007).

    Google Scholar 

  62. Hernandez, Y. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotech. 3, 563–568 (2008).

    CAS  Google Scholar 

  63. Shih, C-J. et al. Bi- and trilayer graphene solutions. Nature Nanotech. 6, 439–445 (2011).

    CAS  Google Scholar 

  64. Green, A. A. & Hersam, M. C. Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett. 9, 4031–4036 (2009).

    CAS  Google Scholar 

  65. O'Neill, A., Khan, U. & Coleman, J. N. Preparation of high concentration dispersions of exfoliated MoS2 with increased flake size. Chem. Mater. 24, 2414–2421 (2012).

    CAS  Google Scholar 

  66. Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    CAS  Google Scholar 

  67. Hass, J., de Heer, W. A. & Conrad, E. H. The growth and morphology of epitaxial multilayer graphene. J. Phys. Condens. Matter 20, (2008).

  68. Wu, Y. et al. State-of-the-art graphene high-frequency electronics. Nano Lett. 12, 3062–3067 (2012).

    CAS  Google Scholar 

  69. Wu, Y. et al. High-frequency, scaled graphene transistors on diamond-like carbon. Nature 472, 74–78 (2011).

    CAS  Google Scholar 

  70. Lin, Y-M. et al. Wafer-scale graphene integrated circuit. Science 332, 1294–1297 (2011).

    CAS  Google Scholar 

  71. Lee, Y-H. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012).

    CAS  Google Scholar 

  72. Zhan, Y., Liu, Z., Najmaei, S., Ajayan, P. M. & Lou, J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8, 966–971 (2012).

    CAS  Google Scholar 

  73. Liu, K.-K. et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12, 1538–1544 (2012).

    CAS  Google Scholar 

  74. Balendhran, S. et al. Atomically thin layers of MoS2 via a two step thermal evaporation-exfoliation method. Nanoscale 4, 461–466 (2012).

    CAS  Google Scholar 

  75. Shi, Y. et al. Van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 12, 2784–2791 (2012).

    CAS  Google Scholar 

  76. Peng, Y. et al. Hydrothermal synthesis of MoS2 and its pressure-related crystallization. J. Solid State Chem. 159, 170–173 (2001).

    CAS  Google Scholar 

  77. Peng, Y. et al. Hydrothermal synthesis and characterization of single-molecular-layer MoS2 and MoSe2 . Chem. Lett. 30, 772–773 (2001).

    Google Scholar 

  78. Matte, H. S. S. et al. MoS2 and WS2 Analogues of graphene. Angew. Chem. Int. Ed. 49, 4059–4062 (2010).

    CAS  Google Scholar 

  79. Matte, H. S. S. R., Plowman, B., Datta, R. & Rao, C. N. R. Graphene analogues of layered metal selenides. Dalton Trans. 40, 10322–10325 (2011).

    CAS  Google Scholar 

  80. Kobayashi, K. & Yamauchi, J. Electronic structure and scanning-tunneling-microscopy image of molybdenum dichalcogenide surfaces. Phys. Rev. B 51, 17085–17095 (1995).

    CAS  Google Scholar 

  81. Li, T. & Galli, G. Electronic properties of MoS2 nanoparticles. J. Phys. Chem. C 111, 16192–16196 (2007).

    CAS  Google Scholar 

  82. Liu, L., Kumar, S. B., Ouyang, Y. & Guo, J. Performance limits of monolayer transition metal dichalcogenide transistors. IEEE Trans. Electron Devices 58, 3042–3047 (2011).

    CAS  Google Scholar 

  83. Ding, Y. et al. First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers. Physica B 406, 2254–2260 (2011).

    CAS  Google Scholar 

  84. Ataca, C., Şahin, H. & Ciraci, S. Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J. Phys. Chem. C 116, 8983–8999 (2012).

    CAS  Google Scholar 

  85. Lebègue, S. & Eriksson, O. Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B 79, 115409 (2009).

    Google Scholar 

  86. Frindt, R. F. The optical properties of single crystals of WSe2 and MoTe2 . J. Phys. Chem. Solids 24, 1107–1108 (1963).

    CAS  Google Scholar 

  87. Frindt, R. F. & Yoffe, A. D. Physical properties of layer structures: optical properties and photoconductivity of thin crystals of molybdenum disulphide. Proc. R. Soc. Lond. A 273, 69–83 (1963).

    Google Scholar 

  88. Kam, K. K. & Parkinson, B. A. Detailed photocurrent spectroscopy of the semiconducting group-VI transition-metal dichalcogenides. J. Phys. Chem. 86, 463–467 (1982).

    CAS  Google Scholar 

  89. Bollinger, M. V. et al. One-dimensional metallic edge states in MoS2 . Phys. Rev. Lett. 87, 196803 (2001).

    CAS  Google Scholar 

  90. Böker, T. et al. Band structure of MoS2, MoSe2, and α-MoTe2: angle-resolved photoelectron spectroscopy and ab initio calculations. Phys. Rev. B 64, 235305 (2001).

    Google Scholar 

  91. Schwierz, F. Graphene transistors. Nature Nanotech. 5, 487–496 (2010).

    CAS  Google Scholar 

  92. The International Technology Roadmap for Semiconductors. http://www.itrs.net/Links/2011ITRS/Home2011.htm (Semiconductor Industry Association, 2011).

  93. Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices (Wiley, 2007).

    Google Scholar 

  94. Morkoc, H. et al. Large-band-gap SiC, III–V nitride, and II–VI ZnSe-based semiconductor device technologies. J. Appl. Phys. 76, 1363–1398 (1994).

    CAS  Google Scholar 

  95. Avouris, P., Chen, Z. & Perebeinos, V. Carbon-based electronics. Nature Nanotech. 2, 605–615 (2007).

    CAS  Google Scholar 

  96. Avouris, P., Freitag, M. & Perebeinos, V. Carbon-nanotube photonics and optoelectronics. Nature Photon. 2, 341–350 (2008).

    CAS  Google Scholar 

  97. Lu, W. & Lieber, C. M. Nanoelectronics from the bottom up. Nature Mater. 6, 841–850 (2007).

    CAS  Google Scholar 

  98. Yoon, Y., Ganapathi, K. & Salahuddin, S. How good can monolayer MoS2 transistors be? Nano Lett. 11, 3768–3773 (2011).

    CAS  Google Scholar 

  99. Colinge, J-P. Multiple-gate SOI MOSFETs. Solid State Electron. 48, 897–905 (2004).

    CAS  Google Scholar 

  100. Ando, T., Fowler, A. B. & Stern, F. Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437–672 (1982).

    CAS  Google Scholar 

  101. Ridley, B. K. The electron-phonon interaction in quasi-two-dimensional semiconductor quantum-well structures. J. Phys. C 15, 5899 (1982).

    CAS  Google Scholar 

  102. Chen, J-H., Jang, C., Xiao, S., Ishigami, M. & Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2 . Nature Nanotech. 3, 206–209 (2008).

    CAS  Google Scholar 

  103. Adam, S., Hwang, E. H. & Das Sarma, S. Scattering mechanisms and Boltzmann transport in graphene. Physica E 40, 1022–1025 (2008).

    CAS  Google Scholar 

  104. Kaasbjerg, K., Thygesen, K. S. & Jacobsen, K. W. Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 85, 115317 (2012).

    Google Scholar 

  105. Hwang, E. H., Adam, S. & Das Sarma, S. Carrier transport in two-dimensional graphene layers. Phys. Rev. Lett. 98, 186806 (2007).

    CAS  Google Scholar 

  106. Jena, D. & Konar, A. Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering. Phys. Rev. Lett. 98, 136805 (2007).

    Google Scholar 

  107. Konar, A., Fang, T. & Jena, D. Effect of high-κ gate dielectrics on charge transport in graphene-based field effect transistors. Phys. Rev. B 82, 115452 (2010).

    Google Scholar 

  108. Ponomarenko, L. A. et al. Effect of a high-κ environment on charge carrier mobility in graphene. Phys. Rev. Lett. 102, 206603 (2009).

    CAS  Google Scholar 

  109. Zhu, W., Perebeinos, V., Freitag, M. & Avouris, P. Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene. Phys. Rev. B 80, 235402 (2009).

    Google Scholar 

  110. Kim, S. et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nature Commun. 3, 1011 (2012).

    Google Scholar 

  111. Sakaki, H., Noda, T., Hirakawa, K., Tanaka, M. & Matsusue, T. Interface roughness scattering in GaAs/AlAs quantum wells. Appl. Phys. Lett. 51, 1934–1936 (1987).

    CAS  Google Scholar 

  112. Castro, E. V. et al. Limits on charge carrier mobility in suspended graphene due to flexural phonons. Phys. Rev. Lett. 105, 266601 (2010).

    Google Scholar 

  113. Brivio, J., Alexander, D. T. L. & Kis, A. Ripples and layers in ultrathin MoS2 membranes. Nano Lett. 11, 5148–5153 (2011).

    CAS  Google Scholar 

  114. Fivaz, R. & Mooser, E. Mobility of charge carriers in semiconducting layer structures. Phys. Rev. 163, 743–755 (1967).

    CAS  Google Scholar 

  115. Podzorov, V., Gershenson, M. E., Kloc, C., Zeis, R. & Bucher, E. High-mobility field-effect transistors based on transition metal dichalcogenides. Appl. Phys. Lett. 84, 3301–3303 (2004).

    CAS  Google Scholar 

  116. Newaz, A. K. M., Puzyrev, Y. S., Wang, B., Pantelides, S. T. & Bolotin, K. I. Probing charge scattering mechanisms in suspended graphene by varying its dielectric environment. Nature Commun. 3, 734 (2012).

    CAS  Google Scholar 

  117. Chen, F., Xia, J., Ferry, D. K. & Tao, N. Dielectric screening enhanced performance in graphene FET. Nano Lett. 9, 2571–2574 (2009).

    CAS  Google Scholar 

  118. Fang, H. et al. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 12, 3788–3792 (2012).

    CAS  Google Scholar 

  119. Lee, K. et al. Electrical characteristics of molybdenum disulfide flakes produced by liquid exfoliation. Adv. Mater. 23, 4178–4182 (2011).

    CAS  Google Scholar 

  120. Brown, S. & Vranesic, Z. Fundamentals of Digital Logic with VHDL Design. (McGraw-Hill, 2008).

    Google Scholar 

  121. Wang, H. et al. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 12, 4674–4680 (2012).

    CAS  Google Scholar 

  122. He, Q. et al. Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small 8, 2994–2999 (2012).

    CAS  Google Scholar 

  123. Pu, J. et al. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 12, 4013–4017 (2012).

    CAS  Google Scholar 

  124. Khan, M. A., Bhattarai, A., Kuznia, J. N. & Olson, D. T. High electron mobility transistor based on a GaN–AlxGa1– xN heterojunction. Appl. Phys. Lett. 63, 1214–1215 (1993).

    CAS  Google Scholar 

  125. Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012).

    CAS  Google Scholar 

  126. Scholes, G. D. & Rumbles, G. Excitons in nanoscale systems. Nature Mater. 5, 683–696 (2006).

    CAS  Google Scholar 

  127. Kamat, P. V. Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 112, 18737–18753 (2008).

    CAS  Google Scholar 

  128. Law, M., Goldberger, J. & Yang, P. D. Semiconductor nanowires and nanotubes. Annu. Rev. Mater. Res. 34, 83–122 (2004).

    CAS  Google Scholar 

  129. Coehoorn, R., Haas, C. & de Groot, R. A. Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps. Phys. Rev. B 35, 6203–6206 (1987).

    CAS  Google Scholar 

  130. Ramasubramaniam, A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B 86, 115409 (2012).

    Google Scholar 

  131. Cheiwchanchamnangij, T. & Lambrecht, W. R. L. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2 . Phys. Rev. B 85, 205302 (2012).

    Google Scholar 

  132. Molina-Sanchez, A. & Wirtz, L. Phonons in single-layer and few-layer MoS2 and WS2 . Phys. Rev. B 84, 155413 (2011).

    Google Scholar 

  133. Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).

    CAS  Google Scholar 

  134. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotech. 5, 574–578 (2010).

    CAS  Google Scholar 

  135. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nature Photon. 4, 611–622 (2010).

    CAS  Google Scholar 

  136. Wang, X., Zhi, L. & Mullen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323–327 (2007).

    Google Scholar 

  137. Alharbi, F. et al. Abundant non-toxic materials for thin film solar cells: alternative to conventional materials. Renew. Energy 36, 2753–2758 (2011).

    CAS  Google Scholar 

  138. Beal, A. R., Hughes, H. P. & Liang, W. Y. The reflectivity spectra of some group VA transition metal dichalcogenides. J. Phys. C 8, 4236 (1975).

    CAS  Google Scholar 

  139. Chandra, S., Singh, D. P., Srivastava, P. C. & Sahu, S. N. Electrodeposited semiconducting molybdenum selenide films. II. Optical, electrical, electrochemical and photoelectrochemical solar cell studies. J. Phys. D: Appl. Phys. 17, 2125 (1984).

    CAS  Google Scholar 

  140. Shimada, T. et al. Work function and photothreshold of layered metal dichalcogenides. Jpn. J. Appl. Phys. 33, 2696.

    CAS  Google Scholar 

  141. Friend, R. H. & Yoffe, A. D. Electronic-properties of intercalation complexes of the transition-metal dichalcogenides. Adv. Phys. 36, 1–94 (1987).

    CAS  Google Scholar 

  142. Benavente, E., Santa Ana, M. A., Mendizabal, F. & Gonzalez, G. Intercalation chemistry of molybdenum disulfide. Coord. Chem. Rev. 224, 87–109 (2002).

    CAS  Google Scholar 

  143. Gourmelon, E. et al. MS2 (M = W, Mo) photosensitive thin films for solar cells. Sol. Energ. Mater. Sol. Cells 46, 115–121 (1997).

    CAS  Google Scholar 

  144. Lee, H. S. et al. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 12, 446–701 (2012).

    Google Scholar 

  145. Shanmugam, M., Bansal, T., Durcan, C. A. & Yu, B. Molybdenum disulphide/titanium dioxide nanocomposite-poly 3-hexylthiophene bulk heterojunction solar cell. Appl. Phys. Lett. 100, 153901–153904 (2012).

    Google Scholar 

  146. Thomalla, M. & Tributsch, H. Photosensitization of nanostructured TiO2 with WS2 quantum sheets. J. Phys. Chem. B 110, 12167–12171 (2006).

    CAS  Google Scholar 

  147. Ho, W., Yu, J. C., Lin, J., Yu, J. & Li, P. Preparation and photocatalytic behavior of MoS2 and WS2 nanocluster sensitized TiO2 . Langmuir 20, 5865–5869 (2004).

    CAS  Google Scholar 

  148. Reynolds, K. J., Barker, J. A., Greenham, N. C., Friend, R. H. & Frey, G. L. Inorganic solution-processed hole-injecting and electron-blocking layers in polymer light-emitting diodes. J. Appl. Phys. 92, 7556–7563 (2002).

    CAS  Google Scholar 

  149. Polman, A. & Atwater, H. A. Photonic design principles for ultrahigh-efficiency photovoltaics. Nature Mater. 11, 174–177 (2012).

    CAS  Google Scholar 

  150. Gokus, T. et al. Making graphene luminescent by oxygen plasma treatment. ACS Nano 3, 3963–3968 (2009).

    CAS  Google Scholar 

  151. Eda, G. et al. Blue photoluminescence from chemically derived graphene oxide. Adv. Mater. 22, 505–509 (2010).

    CAS  Google Scholar 

  152. Carladous, A. et al. Light emission from spectral analysis of Au/MoS2 nanocontacts stimulated by scanning tunneling microscopy. Phys. Rev. B 66, 045401 (2002).

    Google Scholar 

  153. Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Google Scholar 

  154. Zhu, Z. Y., Cheng, Y. C. & Schwingenschlögl, U. Giant spin–orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys. Rev. B 84, 153402 (2011).

    Google Scholar 

  155. Rycerz, A., Tworzydlo, J. & Beenakker, C. W. J. Valley filter and valley valve in graphene. Nature Phys. 3, 172–175 (2007).

    CAS  Google Scholar 

  156. Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007).

    Google Scholar 

  157. Schedin, F. et al. Detection of individual gas molecules adsorbed on graphene. Nature Mater. 6, 652–655 (2007).

    CAS  Google Scholar 

  158. Fowler, J. D. et al. Practical chemical sensors from chemically derived graphene. ACS Nano 3, 301–306 (2009).

    CAS  Google Scholar 

  159. Dan, Y. P., Lu, Y., Kybert, N. J., Luo, Z. T. & Johnson, A. T. C. Intrinsic response of graphene vapor sensors. Nano Lett. 9, 1472–1475 (2009).

    CAS  Google Scholar 

  160. Julien, C., Sekine, T. & Balkanski, M. Lattice dynamics of lithium intercalated MoS2 . Solid State Ionics 48, 225–229 (1991).

    CAS  Google Scholar 

  161. Li, H. et al. Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 8, 63–67 (2012).

    CAS  Google Scholar 

  162. Late, D. J., Liu, B., Matte, H. S. S. R., Dravid, V. P. & Rao, C. N. R. Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 6, 5635–5641 (2012).

    CAS  Google Scholar 

  163. Wu, S. et al. Electrochemically reduced single-layer MoS2 nanosheets: characterization, properties, and sensing applications. Small 8, 2264–2270 (2012).

    CAS  Google Scholar 

  164. Wilson, J. A., Di Salvo, F. J. & Mahajan, S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 24, 117–201 (1975).

    CAS  Google Scholar 

  165. Gmelin Handbook of Inorganic and Organometallic Chemistry 8th edn, Vol. B7 (Springer, 1995).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Strano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, Q., Kalantar-Zadeh, K., Kis, A. et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech 7, 699–712 (2012). https://doi.org/10.1038/nnano.2012.193

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.193

This article is cited by

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research