Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

In situ atomic-scale imaging of electrochemical lithiation in silicon


In lithium-ion batteries, the electrochemical reaction between the electrodes and lithium is a critical process that controls the capacity, cyclability and reliability of the battery. Despite intensive study, the atomistic mechanism of the electrochemical reactions occurring in these solid-state electrodes remains unclear. Here, we show that in situ transmission electron microscopy can be used to study the dynamic lithiation process of single-crystal silicon with atomic resolution. We observe a sharp interface (1 nm thick) between the crystalline silicon and an amorphous LixSi alloy. The lithiation kinetics are controlled by the migration of the interface, which occurs through a ledge mechanism involving the lateral movement of ledges on the close-packed {111} atomic planes. Such ledge flow processes produce the amorphous LixSi alloy through layer-by-layer peeling of the {111} atomic facets, resulting in the orientation-dependent mobility of the interfaces.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Progressive migration of the sharp ACI during solid-state amorphization (lithiation) of a crystalline 〈111〉-oriented silicon nanowire.
Figure 2: Ledge mechanism of lithiation in c-Si.
Figure 3: Comparison of the migration speed of the different ACIs.
Figure 4: Atomically resolved structure of the ACI.
Figure 5: Ledge mechanism observed in a 〈110〉-oriented silicon nanowire during lithiation.


  1. 1

    Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    CAS  Article  Google Scholar 

  2. 2

    Beaulieu, L. Y. et al. Colossal reversible volume changes in lithium alloys. Electrochem. Solid-State Lett. 4, A137–A140 (2001).

    CAS  Article  Google Scholar 

  3. 3

    Limthongkul, P., Jang, Y. I., Dudney, N. J. & Chiang, Y. M. Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage. Acta Mater. 51, 1103–1113 (2003).

    CAS  Article  Google Scholar 

  4. 4

    Kang, B. & Ceder, G. Battery materials for ultrafast charging and discharging. Nature 458, 190–193 (2009).

    CAS  Article  Google Scholar 

  5. 5

    Goodenough, J. B. & Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010).

    CAS  Article  Google Scholar 

  6. 6

    Balke, N. et al. Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. Nature Nanotech. 5, 749–754 (2010).

    CAS  Article  Google Scholar 

  7. 7

    Huang, J. Y. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515–1520 (2010).

    CAS  Article  Google Scholar 

  8. 8

    Chan, C. K. et al. High-performance lithium battery anodes using silicon nanowires. Nature Nanotech. 3, 31–35 (2008).

    CAS  Article  Google Scholar 

  9. 9

    Lee, S. W. et al. High-power lithium batteries from functionalized carbon-nanotube electrodes. Nature Nanotech. 5, 531–537 (2010).

    CAS  Article  Google Scholar 

  10. 10

    Zhang, H., Yu, X. & Braun, P. V. Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nature Nanotech. 6, 277–281 (2011).

    CAS  Article  Google Scholar 

  11. 11

    Obrovac, M. N. & Christensen, L. Structural changes in silicon anodes during lithium insertion/extraction. Electrochem. Solid-State Lett. 7, A93–A96 (2004).

    CAS  Article  Google Scholar 

  12. 12

    Liu, X. H. & Huang, J. Y. In situ TEM electrochemistry of anode materials in lithium ion batteries. Energy Environ. Sci. 4, 3844–3860 (2011).

    CAS  Article  Google Scholar 

  13. 13

    Liu, X. H. et al. Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 11, 3312–3318 (2011).

    CAS  Article  Google Scholar 

  14. 14

    Chon, M. J. et al. Real-time measurement of stress and damage evolution during initial lithiation of crystalline silicon. Phys. Rev. Lett. 107, 045503 (2011).

    CAS  Article  Google Scholar 

  15. 15

    Liu, X. H. et al. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6, 1522–1531 (2012).

    CAS  Article  Google Scholar 

  16. 16

    Lee, S. W., McDowell, M. T., Choi, J. W. & Cui, Y. Anomalous shape changes of silicon nanopillars by electrochemical lithiation. Nano Lett. 11, 3034–3039 (2011).

    CAS  Article  Google Scholar 

  17. 17

    Goldman, J. L., Long, B. R., Gewirth, A. A. & Nuzzo, R. G. Strain anisotropies and self-limiting capacities in single-crystalline 3D silicon microstructures: models for high energy density lithium-ion battery anodes. Adv. Funct. Mater. 21, 2412–2422 (2011).

    CAS  Article  Google Scholar 

  18. 18

    Porter, D. A. & Easterling, K. E. Phase Transformations in Metals and Alloys (Chapman and Hall, 1992).

    Book  Google Scholar 

  19. 19

    Liu, X. H. et al. In situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures. Adv. Energy Mater. 2, 722–741 (2012).

    CAS  Article  Google Scholar 

  20. 20

    Ross, F. M., Tersoff, J. & Reuter, M. C. Sawtooth faceting in silicon nanowires. Phys. Rev. Lett. 95, 146104 (2005).

    CAS  Article  Google Scholar 

  21. 21

    Johnson, W. L. Thermodynamic and kinetic aspects of the crystal to glass transformation in metallic materials. Prog. Mater. Sci. 30, 81–134 (1986).

    CAS  Article  Google Scholar 

  22. 22

    Tu, K. N. Selective growth of metal-rich silicide of near-noble metals. Appl. Phys. Lett. 27, 221–224 (1975).

    CAS  Article  Google Scholar 

  23. 23

    Key, B. et al. Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. J. Am. Chem. Soc. 131, 9239–9249 (2009).

    CAS  Article  Google Scholar 

  24. 24

    Key, B., Morcrette, M., Tarascon, J. M. & Grey, C. P. Pair distribution function analysis and solid state NMR studies of silicon electrodes for lithium ion batteries: understanding the (de)lithiation mechanisms. J. Am. Chem. Soc. 133, 503–512 (2011).

    CAS  Article  Google Scholar 

  25. 25

    Liu, X. H. et al. Ultrafast electrochemical lithiation of individual Si nanowire anodes. Nano Lett. 11, 2251–2258 (2011).

    CAS  Article  Google Scholar 

  26. 26

    Yang, H. et al. Orientation-dependent interfacial mobility governs the anisotropic swelling in lithiated silicon nanowires. Nano Lett. 12, 1953–1958 (2012).

    CAS  Article  Google Scholar 

  27. 27

    Lee, S. W., McDowell, M. T., Berla, L. A., Nix, W. D. & Cui, Y. Fracture of crystalline silicon nanopillars during electrochemical lithium insertion. Proc. Natl Acad. Sci. USA 109, 4080–4085 (2012).

    CAS  Article  Google Scholar 

  28. 28

    Krylyuk, S., Davydov, A. V. & Levin, I. Tapering control of Si nanowires grown from SiCl4 at reduced pressure. ACS Nano 5, 656–664 (2011).

    CAS  Article  Google Scholar 

  29. 29

    Huang, S. & Zhu, T. Atomistic mechanisms of lithium insertion in amorphous silicon. J. Power Sources 196, 3664–3668 (2011).

    CAS  Article  Google Scholar 

Download references


Portions of this work were supported by a Laboratory Directed Research and Development (LDRD) project at Sandia National Laboratories (SNL) and partly by Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center (EFRC) funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (award no. DESC0001160). The LDRD supported the development and fabrication of platforms. The NEES centre supported the development of TEM techniques. The Sandia-Los Alamos Center for Integrated Nanotechnologies (CINT) supported the TEM capability. Sandia National Laboratories is a multiprogramme laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the US Department of Energy's National Nuclear Security Administration (contract DE-AC04-94AL85000). T.Z. acknowledges support from the NSF (grants CMMI-0758554 and 1100205). J.L. acknowledges support from the NSF (DMR-1008104 and DMR-1120901) and AFOSR (FA9550-08-1-0325). S.L.Z. acknowledges support from the NSF (grant CMMI-0900692).

Author information




X.H.L. and J.Y.H. conceived and designed the experiments. S.K., J.Y., S.A.D., A.V.D. and S.T.P. synthesized the nanowire samples. X.H.L. and J.W.W. carried out in situ TEM experiments. S.H., F.F., X.H., S.Z. and T.Z. performed MD simulations. X.H.L. performed data analysis. X.H.L., T.Z. and J.Y.H. wrote the paper. S.Z. and J.L. revised the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Xiao Hua Liu, Ting Zhu or Jian Yu Huang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 753 kb)

Supplementary Movie S1

Supplementary Movie S1 (MOV 26908 kb)

Supplementary Movie S2

Supplementary Movie S2 (MOV 9402 kb)

Supplementary Movie S3

Supplementary Movie S3 (MOV 11903 kb)

Supplementary Movie S4

Supplementary Movie S4 (MOV 26467 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, X., Wang, J., Huang, S. et al. In situ atomic-scale imaging of electrochemical lithiation in silicon. Nature Nanotech 7, 749–756 (2012).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research