Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Voltage-dependent conductance of a single graphene nanoribbon

This article has been updated


Graphene nanoribbons could potentially be used to create molecular wires with tailored conductance properties. However, understanding charge transport through a single molecule requires length-dependent conductance measurements and a systematic variation of the electrode potentials relative to the electronic states of the molecule1,2. Here, we show that the conductance properties of a single molecule can be correlated with its electronic states. Using a scanning tunnelling microscope, the electronic structure of a long and narrow graphene nanoribbon, which is adsorbed on a Au(111) surface, is spatially mapped and its conductance then measured by lifting the molecule off the surface with the tip of the microscope. The tunnelling decay length is measured over a wide range of bias voltages, from the localized Tamm states over the gap up to the delocalized occupied and unoccupied electronic states of the nanoribbon. We also show how the conductance depends on the precise atomic structure and bending of the molecule in the junction, illustrating the importance of the edge states and a planar geometry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electronic structure of single graphene nanoribbons.
Figure 2: Single-molecule conductance measurements.
Figure 3: Charge transport for different electron energies and molecular structures.
Figure 4: Calculated conductance for different cases.

Similar content being viewed by others

Change history

  • 19 October 2012

    In the version of this Letter originally published online, in the caption for Fig. 1g, the value of the bias voltage was incorrect and should have read −0.55 V. This error has been corrected in all versions of the Letter.


  1. Tao, N. J. Electron transport in molecular junctions. Nature Nanotech. 1, 173–181 (2006).

    Article  CAS  Google Scholar 

  2. Weiss, E. A., Wasielewski, M. R. & Ratner, M. A. Molecules as wires: molecule-assisted movement of charge and energy. Top. Curr. Chem. 257, 103–133 (2005).

    Article  Google Scholar 

  3. Gray, H. B. & Winkler, J. R. Electron transfer in proteins. Annu. Rev. Biochem. 65, 537–561 (1996).

    Article  CAS  Google Scholar 

  4. Joachim, C. & Ratner, M. A. Molecular electronics: some views on transport junctions and beyond. Proc. Natl Acad. Sci. USA 102, 8801–8808 (2005).

    Article  CAS  Google Scholar 

  5. Launay, J-P. Long-distance intervalence electron transfer. Chem. Soc. Rev. 30, 386–397 (2001).

    Article  CAS  Google Scholar 

  6. Yamada, R., Kumazawa, H., Noutoshi, T., Tanaka, S. & Tada, H. Electrical conductance of oligothiophene molecular wires. Nano Lett. 8, 1237–1240 (2008).

    Article  CAS  Google Scholar 

  7. Choi, S. H., Kim, B. & Frisbie, C. D. Electrical resistance of long conjugated molecular wires. Science 320, 1482–1486 (2008).

    Article  CAS  Google Scholar 

  8. Sedghi, G. et al. Long-range electron tunnelling in oligo-porphyrin molecular wires. Nature Nanotech. 6, 517–523 (2011).

    Article  CAS  Google Scholar 

  9. Temirov, R., Lassise, A., Anders, F. B. & Tautz, F. S. Kondo effect by controlled cleavage of a single-molecule contact. Nanotechnology 19, 065401 (2008).

    Article  CAS  Google Scholar 

  10. Lafferentz, L. et al. Conductance of a single conjugated polymer as a continuous function of its length. Science 323, 1193–1197 (2009).

    Article  CAS  Google Scholar 

  11. Wang, W., Lee, T. & Reed, M. A. Mechanism of electron conduction in self-assembled alkanethiol monolayer devices. Phys. Rev. B 68, 035416 (2003).

    Article  Google Scholar 

  12. Landau, A., Kronik, L. & Nitzan, A. Cooperative effects in molecular conducation. J. Comp. Theor. Nanosci. 5, 535–544 (2008).

    Article  CAS  Google Scholar 

  13. Joachim, C. & Magoga, M. The effective mass of an electron when tunneling through a molecular wire. Chem. Phys. 281, 347–352 (2002).

    Article  CAS  Google Scholar 

  14. Li, X. et al. Conductance of single alkanethiols: conduction mechanism and effect of molecule–electrode contacts. J. Am. Chem. Soc. 128, 2135–2141 (2006).

    Article  CAS  Google Scholar 

  15. Wang, C. et al. Oligoyne single molecular wires. J. Am. Chem. Soc. 131, 15647–15654 (2009).

    Article  CAS  Google Scholar 

  16. Joachim, C. & Ratner, M. A. Molecular wires: guiding the super-exchange interactions between two electrodes. Nanotechnology 15, 1065–1075 (2004).

    Article  CAS  Google Scholar 

  17. Han, M. Y., Özyilmaz, B., Zhang, Y. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).

    Article  Google Scholar 

  18. Brey, L. & Fertig, H. A. Electronic states of graphene nanoribbons studied with the Dirac equation. Phys. Rev. B 73, 235411 (2006).

    Article  Google Scholar 

  19. Jiao, L., Zhang, L., Wang, X., Diankov, G. & Dai, H. Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009).

    Article  CAS  Google Scholar 

  20. Fasoli, A., Colli, A., Lombardo, A. & Ferrari, A. C. Fabrication of graphene nanoribbons via nanowire lithography. Phys. Status Solidi B 246, 2514–2517 (2009).

    Article  CAS  Google Scholar 

  21. Moreno-Moreno, M., Castellanos-Gomez, A., Rubio-Bollinger, G., Gomez-Herrero, J. & Agrait, N. Ultralong natural graphene nanoribbons and their electrical conductivity. Small 5, 924–927 (2009).

    Article  CAS  Google Scholar 

  22. Grill, L. et al. Nano-architectures by covalent assembly of molecular building blocks. Nature Nanotech. 2, 687–691 (2007).

    Article  CAS  Google Scholar 

  23. Evaldsson, M., Zozoulenko, I. V., Xu, H. & Heinzel, T. Edge-disorder-induced Anderson localization and conduction gap in graphene nanoribbons. Phys. Rev. B 78, 161407 (2008).

    Article  Google Scholar 

  24. Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010).

    Article  CAS  Google Scholar 

  25. Repp, J., Meyer, G., Stojkovic, S., Gourdon, A. & Joachim, C. Molecules on insulating films: scanning tunneling microscopy imaging of individual molecular orbitals. Phys. Rev. Lett. 94, 026803 (2005).

    Article  Google Scholar 

  26. Tamm, I. Über eine mögliche Art der Elektronenbindung. Phys. Z. Sowjetunion 1, 733–746 (1932).

    CAS  Google Scholar 

  27. Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954–17961 (1996).

    Article  CAS  Google Scholar 

  28. Tao, C. et al. Spatially resolving edge states of chiral graphene nanoribbons. Nature Phys. 7, 616–620 (2011).

    Article  CAS  Google Scholar 

  29. Rutter, G. M., Guisinger, N. P., Crain, J. N., First, P. N. & Stroscio, J. A. Edge structure of epitaxial graphene islands. Phys. Rev. B 81, 245408 (2010).

    Article  Google Scholar 

  30. Tian, J., Cao, H., Wu, W., Yu, Q. & Chen, Y. P. Direct imaging of graphene edges: atomic structure and electronic scattering. Nano Lett. 11, 3663–3668 (2011).

    Article  CAS  Google Scholar 

Download references


The authors acknowledge financial support from European Projects ARTIST and AtMol and the German Science Foundation DFG (through SFB 658). We also acknowledge the A*STAR Computational Resource Centre (A*CRC) for the computational resources and support.

Author information

Authors and Affiliations



M.K. performed the experiments. M.K. and L.G. analysed the data. F.A. and C.J. carried out the theoretical calculations. L.G. conceived the experiments. L.G. and C.J. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Leonhard Grill.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3996 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koch, M., Ample, F., Joachim, C. et al. Voltage-dependent conductance of a single graphene nanoribbon. Nature Nanotech 7, 713–717 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing