Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Microfluidic technologies for accelerating the clinical translation of nanoparticles

Abstract

Using nanoparticles for therapy and imaging holds tremendous promise for the treatment of major diseases such as cancer. However, their translation into the clinic has been slow because it remains difficult to produce nanoparticles that are consistent 'batch-to-batch', and in sufficient quantities for clinical research. Moreover, platforms for rapid screening of nanoparticles are still lacking. Recent microfluidic technologies can tackle some of these issues, and offer a way to accelerate the clinical translation of nanoparticles. In this Progress Article, we highlight the advances in microfluidic systems that can synthesize libraries of nanoparticles in a well-controlled, reproducible and high-throughput manner. We also discuss the use of microfluidics for rapidly evaluating nanoparticles in vitro under microenvironments that mimic the in vivo conditions. Furthermore, we highlight some systems that can manipulate small organisms, which could be used for evaluating the in vivo toxicity of nanoparticles or for drug screening. We conclude with a critical assessment of the near- and long-term impact of microfluidics in the field of nanomedicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nanoparticles in clinical development, steps for their translation (with average timescales) and microfluidic methods (green boxes) that could improve or complement current technologies.
Figure 2: Microfluidic synthesis of nanoparticles.
Figure 3: Microfluidic systems for in vitro evaluation and screening of nanoparticles.

Similar content being viewed by others

References

  1. Petros, R. A. & DeSimone, J. M. Strategies in the design of nanoparticles for therapeutic applications. Nature Rev. Drug. Discov. 9, 615–627 (2010).

    Article  CAS  Google Scholar 

  2. Gregoriadis, G. Drug entrapment in liposomes. FEBS Lett. 36, 292–296 (1973).

    Article  CAS  Google Scholar 

  3. Hrkach, J. et al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci. Transl. Med. 4, 128ra39 (2012). This article describes the translation of the first targeted polymeric nanoparticle for drug delivery from discovery to clinical trials.

    Article  Google Scholar 

  4. Qiao, R., Yang, C. & Gao, M. Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. J. Mater. Chem. 19, 6274–6293 (2009).

    Article  CAS  Google Scholar 

  5. Haun, J. B. et al. Micro-NMR for rapid molecular analysis of human tumor samples. Sci. Transl. Med. 3, 71ra16 (2011).

    Article  Google Scholar 

  6. Kim, B. Y., Rutka, J. T. & Chan, W. C. Nanomedicine. N. Engl. J. Med. 363, 2434–2443 (2010).

    Article  CAS  Google Scholar 

  7. Kamaly, N., Xiao, Z., Valencia, P. M., Radovic-Moreno, A. F. & Farokhzad, O. C. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem. Soc. Rev. 41, 2971–3010 (2012).

    Article  CAS  Google Scholar 

  8. Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotech. 2, 751–760 (2007).

    Article  CAS  Google Scholar 

  9. Barreto, J. A. et al. Nanomaterials: applications in cancer imaging and therapy. Adv. Mater. 23, H18–H40 (2011).

    Article  CAS  Google Scholar 

  10. Shi, J., Xiao, Z., Kamaly, N. & Farokhzad, O. C. Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation. Acc. Chem. Res. 44, 1123–1134 (2011).

    Article  CAS  Google Scholar 

  11. Murday, J. S., Siegel, R. W., Stein, J. & Wright, J. F. Translational nanomedicine: status assessment and opportunities. Nanomedicine 5, 251–273 (2009).

    Article  CAS  Google Scholar 

  12. Chou, L. Y., Ming, K. & Chan, W. C. Strategies for the intracellular delivery of nanoparticles. Chem. Soc. Rev. 40, 233–245 (2011).

    Article  CAS  Google Scholar 

  13. Nel, A. E. et al. Understanding biophysicochemical interactions at the nano–bio interface. Nature Mater. 8, 543–557 (2009).

    Article  CAS  Google Scholar 

  14. Whitesides, G. M. The origins and the future of microfluidics. Nature 442, 368–373 (2006). An excellent classic review on the present and future of microfluidics by one of the fathers of the field, George Whitesides.

    Article  CAS  Google Scholar 

  15. DeMello, A. J. Control and detection of chemical reactions in microfluidic systems. Nature 442, 394–402 (2006).

    Article  CAS  Google Scholar 

  16. Johnson, B. K. & Prud'homme, R. K. Mechanism for rapid self-assembly of block copolymer nanoparticles. Phys. Rev. Lett. 91, 118302 (2003). This article describes the mechanism of nanoparticle self-assembly and explains how rapid mixing is key in controlling nanoparticle size.

    Article  Google Scholar 

  17. Chen, T., Hynninen, A. P., Prud'homme, R. K., Kevrekidis, I. G. & Panagiotopoulos, A. Z. Coarse-grained simulations of rapid assembly kinetics for polystyrene-b-poly(ethylene oxide) copolymers in aqueous solutions. J. Phys. Chem. B 112, 16357–16366 (2008).

    Article  CAS  Google Scholar 

  18. Karnik, R. et al. Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett. 8, 2906–2912 (2008).

    Article  CAS  Google Scholar 

  19. Capretto, L., Cheng, W., Hill, M. & Zhang, X. Micromixing within microfluidic devices. Top. Curr. Chem. 304, 27–68 (2011).

    Article  CAS  Google Scholar 

  20. Rhee, M. et al. Synthesis of size-tunable polymeric nanoparticles enabled by 3D hydrodynamic flow focusing in single-layer microchannels. Adv. Mater. 23, H79–H83 (2011).

    Article  CAS  Google Scholar 

  21. Liu, K. et al. A digital microfluidic droplet generator produces self-assembled supramolecular nanoparticles for targeted cell imaging. Nanotechnology 21, 445603 (2010).

    Article  Google Scholar 

  22. Valencia, P. M. et al. Single-step assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by microfluidic rapid mixing. ACS Nano 4, 1671–1679 (2010).

    Article  CAS  Google Scholar 

  23. Jahn, A. et al. Preparation of nanoparticles by continuous-flow microfluidics. J. Nanopart. Res. 10, 925–934 (2008).

    Article  CAS  Google Scholar 

  24. Besson, C., Finney, E. E. & Finke, R. G. A mechanism for transition-metal nanoparticle self-assembly. J. Am. Chem. Soc. 127, 8179–8184 (2005).

    Article  CAS  Google Scholar 

  25. Song, Y., Hormes, J. & Kumar, C. S. Microfluidic synthesis of nanomaterials. Small 4, 698–711 (2008).

    Article  CAS  Google Scholar 

  26. Gu, F. X. et al. Targeted nanoparticles for cancer therapy. Nano Today 2, 14–21 (2007).

    Article  Google Scholar 

  27. Shestopalov, I., Tice, J. D. & Ismagilov, R. F. Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. Lab Chip 4, 316–321 (2004).

    Article  CAS  Google Scholar 

  28. Kikkeri, R., Laurino, P., Odedra, A. & Seeberger, P. H. Synthesis of carbohydrate-functionalized quantum dots in microreactors. Angew. Chem. Int. Ed. 49, 2054–2057 (2010).

    Article  CAS  Google Scholar 

  29. Marre, S. & Jensen, K. F. Synthesis of micro and nanostructures in microfluidic systems. Chem. Soc. Rev. 39, 1183–1202 (2010).

    Article  CAS  Google Scholar 

  30. Zhao, C. X., He, L. Z., Qiao, S. Z. & Middelberg, A. P. J. Nanoparticle synthesis in microreactors. Chem. Eng. Sci. 66, 1463–1479 (2011).

    Article  CAS  Google Scholar 

  31. Fraikin, J. L., Teesalu, T., McKenney, C. M., Ruoslahti, E. & Cleland, A. N. A high-throughput label-free nanoparticle analyser. Nature Nanotech. 6, 308–313 (2011).

    Article  CAS  Google Scholar 

  32. Birnbaumer, G. et al. Rapid liposome quality assessment using a lab-on-a-chip. Lab Chip 11, 2753–2762 (2011).

    Article  CAS  Google Scholar 

  33. Wang, H. et al. A rapid pathway toward a superb gene delivery system: programming structural and functional diversity into a supramolecular nanoparticle library. ACS Nano 4, 6235–6243 (2010). This article is one of the first examples that exploit microfluidic systems for rapid combinatorial synthesis of nanoparticles with a variety of physical and chemical properties.

    Article  CAS  Google Scholar 

  34. Chen, D. et al. Rapid discovery of potent siRNA-lipid-nanoparticles enabled by controlled microfluidic formulation. J. Am. Chem. Soc. 134, 6948–6951 (2012).

    Article  CAS  Google Scholar 

  35. Kim, Y. et al. Mass production and size control of lipid-polymer hybrid nanoparticles through controlled microvortices. Nano Lett. 12, 3587–3591 (2012).

    Article  CAS  Google Scholar 

  36. Dobrovolskaia, M. A., Germolec, D. R. & Weaver, J. L. Evaluation of nanoparticle immunotoxicity. Nature Nanotech. 4, 411–414 (2009).

    Article  CAS  Google Scholar 

  37. Cho, E. C., Zhang, Q. & Xia, Y. The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nature Nanotech. 6, 385–391 (2011).

    Article  CAS  Google Scholar 

  38. Ziolkowska, K., Kwapiszewski, R. & Brzozka, Z. Microfluidic devices as tools for mimicking the in vivo environment. New J. Chem. 35, 979–990 (2011).

    Article  CAS  Google Scholar 

  39. Mahto, S. K., Yoon, T. H. & Rhee, S. W. A new perspective on in vitro assessment method for evaluating quantum dot toxicity by using microfluidics technology. Biomicrofluidics 4, 034111 (2010).

    Article  Google Scholar 

  40. Huh, D., Torisawa, Y. S., Hamilton, G. A., Kim, H. J. & Ingber, D. E. Microengineered physiological biomimicry: organs-on-chips. Lab Chip 12, 2156–2164 (2012).

    Article  CAS  Google Scholar 

  41. Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010). This article describes the design and assembly of a microfluidic system that recreates the alveolar-endothelial interface in lungs.

    Article  CAS  Google Scholar 

  42. Kim, H. J., Huh, D., Hamilton, G. & Ingber, D. E. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12, 2165–2174 (2012).

    Article  CAS  Google Scholar 

  43. Toh, Y. C. et al. A microfluidic 3D hepatocyte chip for drug toxicity testing. Lab Chip 9, 2026–2035 (2009).

    Article  CAS  Google Scholar 

  44. Crane, M. M., Chung, K., Stirman, J. & Lu, H. Microfluidics-enabled phenotyping, imaging, and screening of multicellular organisms. Lab Chip 10, 1509–1517 (2010).

    Article  CAS  Google Scholar 

  45. George, S. et al. Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials. ACS Nano 5, 1805–1817 (2011).

    Article  CAS  Google Scholar 

  46. Shi, W., Wen, H., Lin, B. & Qin, J. Microfluidic platform for the study of Caenorhabditis elegans. Top. Curr. Chem. 304, 323–338 (2011).

    Article  CAS  Google Scholar 

  47. Baker, M. Screening: the age of fishes. Nature Meth. 8, 47–51 (2011).

    Article  CAS  Google Scholar 

  48. Samara, C. et al. Large-scale in vivo femtosecond laser neurosurgery screen reveals small-molecule enhancer of regeneration. Proc. Natl Acad. Sci. USA 107, 18342–18347 (2010).

    Article  CAS  Google Scholar 

  49. Dendukuri, D. & Doyle, P. S. The synthesis and assembly of polymeric microparticles using microfluidics. Adv. Mater. 21, 4071–4086 (2009).

    Article  CAS  Google Scholar 

  50. Zhao, J. & Grant, S. F. Advances in whole genome sequencing technology. Curr. Pharm. Biotechnol. 12, 293–305 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Koch-Prostate Cancer Foundation Award in Nanotherapeutics (R.L. and O.C.F.), the National Cancer Institute Center of Cancer Nanotechnology Excellence at MIT-Harvard (U54-CA151884, R.L. and O.C.F.), and the National Heart, Lung, and Blood Institute Programs of Excellence in Nanotechnology (HHSN268201000045C; R.L. and O.C.F.). P.M.V. is supported by the National Science Foundation graduate research fellowship. We thank B. Timko and F. Karim for assistance in drafting Figs 1 and 2, respectively. We also thank A. Radovic-Moreno, C. Alabi and E. Pridgen for their insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Omid C. Farokhzad, Rohit Karnik or Robert Langer.

Ethics declarations

Competing interests

The authors declare competing financial interests: O.C.F. and R.L. disclose financial interest in BIND Biosciences and Selecta Biosciences, two biotechnology companies developing nanoparticle technologies for medical applications. BIND and Selecta did not support the aforementioned work, and at present these companies have no rights to any technology or intellectual property developed as part of this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valencia, P., Farokhzad, O., Karnik, R. et al. Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nature Nanotech 7, 623–629 (2012). https://doi.org/10.1038/nnano.2012.168

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.168

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing