Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Selective molecular sieving through porous graphene


Membranes act as selective barriers and play an important role in processes such as cellular compartmentalization and industrial-scale chemical and gas purification. The ideal membrane should be as thin as possible to maximize flux, mechanically robust to prevent fracture, and have well-defined pore sizes to increase selectivity. Graphene is an excellent starting point for developing size-selective membranes1,2,3,4,5,6,7,8 because of its atomic thickness9, high mechanical strength10, relative inertness and impermeability to all standard gases11,12,13,14. However, pores that can exclude larger molecules but allow smaller molecules to pass through would have to be introduced into the material. Here, we show that ultraviolet-induced oxidative etching15,16 can create pores in micrometre-sized graphene membranes, and the resulting membranes can be used as molecular sieves. A pressurized blister test and mechanical resonance are used to measure the transport of a range of gases (H2, CO2, Ar, N2, CH4 and SF6) through the pores. The experimentally measured leak rate, separation factors and Raman spectrum agree well with models based on effusion through a small number of ångstrom-sized pores.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Measuring leak rates in porous graphene membranes.
Figure 2: Comparison of leak rates of pristine and porous graphene membranes.
Figure 3: Measuring leak rates in a porous graphene membrane using mechanical resonance.
Figure 4: Compilation of measured leak rates.


  1. Jiang, D., Cooper, V. R. & Dai, S. Porous graphene as the ultimate membrane for gas separation. Nano Lett. 9, 4019–4024 (2009).

    CAS  Article  Google Scholar 

  2. Du, H. et al. Separation of hydrogen and nitrogen gases with porous graphene membrane. J. Phys. Chem. C 115, 23261–23266 (2011).

    CAS  Article  Google Scholar 

  3. Schrier, J. Helium separation using porous graphene membranes. J. Phys. Chem. Lett. 1, 2284–2287 (2010).

    CAS  Article  Google Scholar 

  4. Hauser, A. W. & Schwerdtfeger, P. Nanoporous graphene membranes for efficient 3He/4He separation. J. Phys. Chem. Lett. 3, 209–213 (2012).

    CAS  Article  Google Scholar 

  5. Blankenburg, S. et al. Porous graphene as an atmospheric nanofilter. Small 6, 2266–2271 (2010).

    CAS  Article  Google Scholar 

  6. Suk, M. E. & Aluru, N. R. Water transport through ultrathin graphene. J. Phys. Chem. Lett. 1, 1590–1594 (2010).

    CAS  Article  Google Scholar 

  7. Schrier, J. & McClain, J. Thermally-driven isotope separation across nanoporous graphene. Chem. Phys. Lett. 521, 118–124 (2012).

    CAS  Article  Google Scholar 

  8. Li, Y., Zhou, Z., Shen, P. & Chen, Z. Two-dimensional polyphenylene: experimentally available porous graphene as a hydrogen purification membrane. Chem. Commun. 46, 3672–3674 (2010).

    CAS  Article  Google Scholar 

  9. Meyer, J. C. et al. The structure of suspended graphene sheets. Nature 446, 60–63 (2007).

    CAS  Article  Google Scholar 

  10. Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    CAS  Article  Google Scholar 

  11. Bunch, J. S. et al. Impermeable atomic membranes from graphene sheets. Nano Lett. 8, 2458–2462 (2008).

    CAS  Article  Google Scholar 

  12. Nair, R. R., Wu, H. A., Jayaram, P. N., Grigorieva, I. V. & Geim, A. K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 335, 442–444 (2012).

    CAS  Article  Google Scholar 

  13. Leenaerts, O., Partoens, B. & Peeters, F. M. Graphene: a perfect nanoballoon. Appl. Phys. Lett. 93, 193107 (2008).

    Article  Google Scholar 

  14. Chen, S. et al. Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano 5, 1321–1327 (2011).

    CAS  Article  Google Scholar 

  15. Ozeki, S., Ito, T., Uozumi, K. & Nishio, I. Scanning tunneling microscopy of UV-induced gasification reaction on highly oriented pyrolytic graphite. Jpn. J. Appl. Phys. 35, 3772–3774 (1996).

    CAS  Article  Google Scholar 

  16. Huh, S. et al. UV/ozone-oxidized large-scale graphene platform with large chemical enhancement in surface-enhanced Raman scattering. ACS Nano 5, 9799–9806 (2011).

    CAS  Article  Google Scholar 

  17. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    CAS  Article  Google Scholar 

  18. Koenig, S. P., Boddeti, N. G., Dunn, M. L. & Bunch, J. S. Ultrastrong adhesion of graphene membranes. Nature Nanotech. 6, 543–546 (2011).

    CAS  Article  Google Scholar 

  19. Liu, L. et al. Graphene oxidation: thickness-dependent etching and strong chemical doping. Nano Lett. 8, 1965–1970 (2008).

    CAS  Article  Google Scholar 

  20. Chang, H. & Bard, A. J. Scanning tunneling microscopy studies of carbon–oxygen reactions on highly oriented pyrolytic graphite. J. Am. Chem. Soc. 113, 5588–5596 (1991).

    CAS  Article  Google Scholar 

  21. Bieri, M. et al. Porous graphenes: two-dimensional polymer synthesis with atomic precision. Chem. Commun. 6919–6921 (2009).

  22. Girit, C. O. et al. Graphene at the edge: stability and dynamics. Science 323, 1705–1708 (2009).

    CAS  Article  Google Scholar 

  23. Schrier, J. Fluorinated and nanoporous graphene materials as sorbents for gas separations. ACS Appl. Mater. Interf. 3, 4451–4458 (2011).

    CAS  Article  Google Scholar 

  24. Bai, J., Zhong, X., Jiang, S., Huang, Y. & Duan, X. Graphene nanomesh. Nature Nanotech. 5, 190–194 (2010).

    CAS  Article  Google Scholar 

  25. Sint, K., Wang, B. & Král, P. Selective ion passage through functionalized graphene nanopores. J. Am. Chem. Soc. 130, 16448–16449 (2008).

    CAS  Article  Google Scholar 

  26. Fan, Z. et al. Easy synthesis of porous graphene nanosheets and their use in supercapacitors. Carbon 50, 1699–1703 (2012).

    CAS  Article  Google Scholar 

  27. Fox, D. et al. Nitrogen assisted etching of graphene layers in a scanning electron microscope. Appl. Phys. Lett. 98, 243117 (2011).

    Article  Google Scholar 

  28. Breck, D. W. in Zeolites Molecular Sieves: Structure, Chemistry, and Use 593–724 (Wiley, 1973).

    Google Scholar 

  29. Bunch, J. S. et al. Electromechanical resonators from graphene sheets. Science 315, 490–493 (2007).

    CAS  Article  Google Scholar 

  30. Hencky, H. Uber den spannungzustand in kreisrunden platten mit verschwindender biegungssteiflgeit. Z. fur Mathematik und Physik 63, 311–317 (1915).

    Google Scholar 

  31. Blakslee, O. L., Proctor, D. G., Seldin, E. J., Spence, G. B. & Weng, T. Elastic constants of compression-annealed pyrolytic graphite. J. Appl. Phys. 41, 3373–3382 (1970).

    CAS  Article  Google Scholar 

Download references


The authors thank D. McSweeney and M. Tanksalvala for help with the resonance measurements and R. Raj for use of the Raman microscope. This work was supported by National Science Foundation (NSF) grants 0900832 (CMMI: Graphene Nanomechanics: The Role of van der Waals Forces) and 1054406 (CMMI: CAREER: Atomic Scale Defect Engineering in Graphene Membranes), the DARPA Center on Nanoscale Science and Technology for Integrated Micro/Nano-Electromechanical Transducers (iMINT), the NSF Industry/University Cooperative Research Center for Membrane Science, Engineering and Technology (MAST), and the National Nanotechnology Infrastructure Network (NNIN) and NSF (grant no. ECS-0335765).

Author information

Authors and Affiliations



S.P.K. and L.W. performed the experiments. S.P.K. and J.S.B. conceived and designed the experiments. All authors interpreted the results and co-wrote the manuscripts.

Corresponding author

Correspondence to J. Scott Bunch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1350 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Koenig, S., Wang, L., Pellegrino, J. et al. Selective molecular sieving through porous graphene. Nature Nanotech 7, 728–732 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research