Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sensing single remote nuclear spins

Abstract

The detection of single nuclear spins would be useful for fields ranging from basic science to quantum information technology. However, although sensing based on diamond defects1,2 and other methods3 have shown high sensitivity1,2,3, they have not been capable of detecting single nuclear spins, and defect-based techniques further require strong defect–spin coupling4,5. Here, we present the detection and identification of single and remote 13C nuclear spins embedded in nuclear spin baths surrounding a single electron spin of a nitrogen-vacancy centre in diamond. We are able to amplify and detect the weak magnetic field noise (10 nT) from a single nuclear spin located 3 nm from the centre using dynamical decoupling control6,7,8,9,10, and achieve a detectable hyperfine coupling strength as weak as 300 Hz. We also confirm the quantum nature of the coupling, and measure the spin-defect distance and the vector components of the nuclear field. The technique marks a step towards imaging, detecting and controlling nuclear spins in single molecules.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: NV centre spin and 13C nuclear spin bath in diamond.
Figure 2: Coherence dips induced by 13C nuclear spins.
Figure 3: Quantum coupling with remote 13C nuclear spins.
Figure 4: Determination of hyperfine couplings of two nuclear spins coupled to the same NV centre.

References

  1. 1

    Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008).

    CAS  Article  Google Scholar 

  2. 2

    Balasubramanian, G. & Chan, I. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

    CAS  Article  Google Scholar 

  3. 3

    Rugar, D., Budakian, R., Mamin, H. J. & Chui, B. W. Single spin detection by magnetic resonance force microscopy. Nature 430, 329–332 (2004).

    CAS  Article  Google Scholar 

  4. 4

    Childress, L. et al. Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314, 281–285 (2006).

    CAS  Article  Google Scholar 

  5. 5

    Dréau, A., Maze, J-R., Lesik, M., Roch, J-F. & Jacques, V. High-resolution spectroscopy of single NV defects coupled with nearby 13C nuclear spins in diamond. Phys. Rev. B 85, 134107 (2012).

    Article  Google Scholar 

  6. 6

    Viola, L., Knill, E. & Lloyd, S. Dynamical decoupling of open quantum systems. Phys. Rev. Lett. 82, 2417–2421 (1999).

    CAS  Article  Google Scholar 

  7. 7

    Du, J. et al. Preserving electron spin coherence in solids by optimal dynamical decoupling. Nature 461, 1265–1268 (2009).

    CAS  Article  Google Scholar 

  8. 8

    De Lange, G., Wang, Z. H., Ristè, D., Dobrovitski, V. V. & Hanson, R. Universal dynamical decoupling of a single solid-state spin from a spin bath. Science 330, 60–63 (2010).

    CAS  Article  Google Scholar 

  9. 9

    Ryan, C., Hodges, J. & Cory, D. Robust decoupling techniques to extend quantum coherence in diamond. Phys. Rev. Lett. 105, 200402 (2010).

    CAS  Article  Google Scholar 

  10. 10

    Naydenov, B. et al. Dynamical decoupling of a single-electron spin at room temperature. Phys. Rev. B 83, 081201 (2011).

    Article  Google Scholar 

  11. 11

    Degen, C. L., Poggio, M., Mamin, H. J., Rettner, C. T. & Rugar, D. Nanoscale magnetic resonance imaging. Proc. Natl Acad. Sci. USA 106, 1313–1317 (2009).

    CAS  Article  Google Scholar 

  12. 12

    Zhao, N., Hu, J-L., Ho, S-W., Wan, J. T. K. & Liu, R. B. Atomic-scale magnetometry of distant nuclear spin clusters via nitrogen-vacancy spin in diamond. Nature Nanotech. 6, 242–246 (2011).

    CAS  Article  Google Scholar 

  13. 13

    Cai, J-M., Jelezko, F., Plenio, M. B. & Retzker, A. Diamond based single molecule magnetic resonance spectroscopy. Preprint at http://arxiv.org/1112.5502 (2011).

  14. 14

    Dutt, M. V. G. et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007).

    Article  Google Scholar 

  15. 15

    Neumann, P. et al. Multipartite entanglement among single spins in diamond. Science 320, 1326–1329 (2008).

    CAS  Article  Google Scholar 

  16. 16

    Bylander, J. et al. Noise spectroscopy through dynamical decoupling with a superconducting flux qubit. Nature Phys. 7, 565–570 (2011).

    CAS  Article  Google Scholar 

  17. 17

    Almog, I. et al. Direct measurement of the system–environment coupling as a tool for understanding decoherence and dynamical decoupling. J. Phys. B 44, 154006 (2011).

    Article  Google Scholar 

  18. 18

    Cywiński, Ł., Lutchyn, R., Nave, C. & Das Sarma, S. How to enhance dephasing time in superconducting qubits. Phys. Rev. B 77, 174509 (2008).

    Article  Google Scholar 

  19. 19

    Pham, L. & Bar-Gill, N. Enhanced solid-state multi-spin metrology using dynamical decoupling. Phys. Rev. B 86, 045214 (2012).

    Article  Google Scholar 

  20. 20

    Zhao, N., Wang, Z-Y. & Liu, R-B. Anomalous decoherence effect in a quantum bath. Phys. Rev. Lett. 106, 217205 (2011).

    Article  Google Scholar 

  21. 21

    Huang, P. et al. Observation of an anomalous decoherence effect in a quantum bath at room temperature. Nature Commun. 2, 570 (2011).

    Article  Google Scholar 

  22. 22

    Reinhard, F. et al. Tuning a spin bath through the quantum-classical transition. Phys. Rev. Lett. 108, 200402 (2012).

    Article  Google Scholar 

  23. 23

    De Lange, G., Ristè, D., Dobrovitski, V. & Hanson, R. Single-spin magnetometry with multipulse sensing sequences. Phys. Rev. Lett. 106, 080802 (2011).

    CAS  Article  Google Scholar 

  24. 24

    Maze, J., Taylor, J. & Lukin, M. Electron spin decoherence of single nitrogen-vacancy defects in diamond. Phys. Rev. B 78, 094303 (2008).

    Article  Google Scholar 

  25. 25

    Zhao, N., Ho, S-W. & Liu, R-B. Decoherence and dynamical decoupling control of nitrogen vacancy center electron spins in nuclear spin baths. Phys. Rev. B 85, 115303 (2012).

    Article  Google Scholar 

  26. 26

    Maurer, P. C. et al. Room-temperature quantum bit memory exceeding one second. Science 336, 1283–1286 (2012).

    CAS  Article  Google Scholar 

  27. 27

    Naydenov, B. et al. Enhanced generation of single optically active spins in diamond by ion implantation. Appl. Phys. Lett. 96, 163108 (2010).

    Article  Google Scholar 

  28. 28

    Naydenov, B. et al. Increasing the coherence time of single electron spins in diamond by high temperature annealing. Appl. Phys. Lett. 97, 242511 (2010).

    Article  Google Scholar 

  29. 29

    Ohno, K. & Heremans, F. Engineering shallow spins in diamond with nitrogen delta-doping. Preprint at http://arxiv.org/1207.2784 (2012).

  30. 30

    Ofori-Okai, B. & Pezzagna, S. Spin properties of very shallow nitrogen vacancy defects in diamond. Preprint at http://arxiv.org/1201.0871 (2012).

  31. 31

    Kolkowitz, S. & Unterreithmeier, Q. Sensing distant nuclear spins with a single electron spin. Preprint at http://arxiv.org/1204.5483 (2012).

  32. 32

    Taminiau, T. & Wagenaar, J. Detection and control of individual nuclear spins using a weakly coupled electron spin. Preprint at http://arxiv.org/1205.4128 (2012).

Download references

Acknowledgements

The authors thank F. Reinhard and T. Staudacher for useful discussions. J.W. acknowledges financial support from the Forschergruppe 1493 and 1482, SFB/TR21, SQUTEC, SOLID and the Max Planck Gesellschaft. R.B.L. thanks Hong Kong Research Grants Council and The Chinese University of Hong Kong Focused Investments Scheme for funding. D.J.T. and M.M. acknowledge funding from the DARPA programme QuASAR.

Author information

Affiliations

Authors

Contributions

N.Z. and R.B.L. proposed the idea. H.F. and N.Z. coordinated the project. H.F., J.H., B.S., M.K., F.J. and N.Z. designed and performed the experiment. N.Z. did the theoretical analysis. J.I., M.M. and D.T. designed and carried out synthesis of the diamond. N.Z., H.F., J.W. and R.B.L. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Ren-Bao Liu or Helmut Fedder.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 927 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhao, N., Honert, J., Schmid, B. et al. Sensing single remote nuclear spins. Nature Nanotech 7, 657–662 (2012). https://doi.org/10.1038/nnano.2012.152

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research