Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

All-optical active switching in individual semiconductor nanowires

Abstract

The imminent limitations of electronic integrated circuits are stimulating intense activity in the area of nanophotonics for the development of on-chip optical components1, and solutions incorporating direct-bandgap semiconductors are important in achieving this end2. Optical processing of data3 at the nanometre scale is promising for circumventing these limitations, but requires the development of a toolbox of components including emitters, detectors, modulators, waveguides and switches. In comparison to components fabricated using top-down methods, semiconductor nanowires offer superior surface properties4 and stronger optical confinement5. They are therefore ideal candidates for nanoscale optical network components6, as well as model systems for understanding optical confinement7. Here, we demonstrate all-optical switching in individual CdS nanowire cavities with subwavelength dimensions through stimulated polariton scattering, as well as a functional NAND gate built from multiple switches. The device design exploits the strong light–matter coupling present in these nanowires, leading to footprints that are a fraction of those of comparable silicon-based dielectric contrast8,9 and photonic crystal10,11 devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Creation of on-chip laser light sources for optical switching.
Figure 2: All-optical active switching in CdS nanowires.
Figure 3: Mechanism of switching phenomena in CdS nanowires.
Figure 4: All-optical nanowire NAND gate.

Similar content being viewed by others

References

  1. Kirchain, R. & Kimerling, L. A roadmap for nanophotonics. Nature Photon. 1, 303–305 (2007).

    Article  CAS  Google Scholar 

  2. Roelkens, G. et al. IIIV/silicon photonics for on-chip and intra-chip optical interconnects. Laser Photon. Rev. 4, 751–779 (2010).

    Article  CAS  Google Scholar 

  3. Caulfield, H. J. & Dolev, S. Why future supercomputing requires optics. Nature Photon. 4, 261–263 (2010).

    Article  CAS  Google Scholar 

  4. Van Vugt, L. K. et al. Variable temperature spectroscopy of as-grown and passivated CdS nanowire optical waveguide cavities. J. Phys. Chem. A 115, 3827–3833 (2011).

    Article  CAS  Google Scholar 

  5. Van Vugt, L. K., Piccione, B. & Agarwal, R. Incorporating polaritonic effects in semiconductor nanowire waveguide dispersion. Appl. Phys. Lett. 97, 061115 (2010).

    Article  Google Scholar 

  6. Barrelet, C. J., Greytak, A. B. & Lieber, C. M. Nanowire photonic circuit elements. Nano Lett. 4, 1981–1985 (2004).

    Article  CAS  Google Scholar 

  7. Van Vugt, L. K., Piccione, B., Cho, C-H., Nukala, P. & Agarwal, R. One-dimensional polaritons with size-tunable and enhanced coupling strengths in semiconductor nanowires. Proc. Natl Acad. Sci. USA 108, 10050–10055 (2011).

    Article  CAS  Google Scholar 

  8. Xu, Q. & Lipson, M. All-optical logic based on silicon micro-ring resonators. Opt. Express 15, 924–929 (2007).

    Article  Google Scholar 

  9. Almeida, V. R., Barrios, C. A., Panepucci, R. R. & Lipson, M. All-optical control of light on a silicon chip. Nature 431, 1081–1084 (2004).

    Article  CAS  Google Scholar 

  10. Tanabe, T., Notomi, M., Mitsugi, S., Shinya, A. & Kuramochi, E. All-optical switches on a silicon chip realized using photonic crystal nanocavities. Appl. Phys. Lett. 87, 151112–151113 (2005).

    Article  Google Scholar 

  11. Corcoran, B. et al. Slow light enhanced nonlinear optics in silicon photonic crystal waveguides. IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).

    Article  Google Scholar 

  12. Duan, X., Huang, Y., Agarwal, R. & Lieber, C. M. Single-nanowire electrically driven lasers. Nature 421, 241–245 (2003).

    Article  CAS  Google Scholar 

  13. Greytak, A. B., Barrelet, C. J., Li, Y. & Lieber, C. M. Semiconductor nanowire laser and nanowire waveguide electro-optic modulators. Appl. Phys. Lett. 87, 151103 (2005).

    Article  Google Scholar 

  14. Piccione, B., van Vugt, L. K. & Agarwal, R. Propagation loss spectroscopy on single nanowire active waveguides. Nano Lett. 10, 2251–2256 (2010).

    Article  CAS  Google Scholar 

  15. Van Vugt, L. K., Zhang, B., Piccione, B., Spector, A. A. & Agarwal, R. Size-dependent waveguide dispersion in nanowire optical cavities: slowed light and dispersionless guiding. Nano Lett. 9, 1684–1688 (2009).

    Article  CAS  Google Scholar 

  16. Hayden, O., Agarwal, R. & Lieber, C. M. Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection. Nature Mater. 5, 352–356 (2006).

    Article  CAS  Google Scholar 

  17. Keil, R. et al. All-optical routing and switching for three-dimensional photonic circuitry. Sci. Rep. 1, 1–6 (2011).

    Article  Google Scholar 

  18. Schönenberger, S. et al. Ultrafast all-optical modulator with femtojoule absorbed switching energy in silicon-on-insulator. Opt. Express 18, 22485–22496 (2010).

    Article  Google Scholar 

  19. Guo, X. et al. Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits. Nano Lett. 9, 4515–4519 (2009).

    Article  CAS  Google Scholar 

  20. Tassone, F. & Yamamoto, Y. Exciton–exciton scattering dynamics in a semiconductor microcavity and stimulated scattering into polaritons. Phys. Rev. B 59, 10830–10842 (1999).

    Article  CAS  Google Scholar 

  21. Wegener, M., Klingshirn, C., Koch, S. W. & Banyai, L. Three types of electronic optical bistabilities in CdS. Semicond. Sci. Tech. 1, 366–375 (1986).

    Article  CAS  Google Scholar 

  22. Heim, U. & Wiesner, P. Direct evidence for a bottleneck of exciton-polariton relaxation in CdS. Phys. Rev. Lett. 30, 1205–1207 (1973).

    Article  Google Scholar 

  23. Tassone, F., Piermarocchi, C., Savona, V., Quattropani, A. & Schwendimann, P. Bottleneck effects in the relaxation and photoluminescence of microcavity polaritons. Phys. Rev. B 56, 7554–7563 (1997).

    Article  CAS  Google Scholar 

  24. Huang, R., Tassone, F. & Yamamoto, Y. Experimental evidence of stimulated scattering of excitons into microcavity polaritons. Phys. Rev. B 61, R7854–R7857 (2000).

    Article  CAS  Google Scholar 

  25. Savvidis, P. G. et al. Angle-resonant stimulated polariton amplifier. Phys. Rev. Lett. 84, 1547–1550 (2000).

    Article  CAS  Google Scholar 

  26. Senellart, P. & Bloch, J. Nonlinear emission of microcavity polaritons in the low density regime. Phys. Rev. Lett. 82, 1233–1236 (1999).

    Article  CAS  Google Scholar 

  27. Dang, L. S., Heger, D., André, R., Bœuf, F. & Romestain, R. Stimulation of polariton photoluminescence in semiconductor microcavity. Phys. Rev. Lett. 81, 3920–3923 (1998).

    Article  CAS  Google Scholar 

  28. Boeuf, F. et al. Evidence of polariton stimulation in semiconductor microcavities. Phys. Rev. B 62, R2279–R2282 (2000).

    Article  CAS  Google Scholar 

  29. Senellart, P., Bloch, J., Sermage, B. & Marzin, J. Y. Microcavity polariton depopulation as evidence for stimulated scattering. Phys. Rev. B 62, R16263–R16266 (2000).

    Article  CAS  Google Scholar 

  30. Alexandrou, A. et al. Stimulated scattering and its dynamics in semiconductor microcavities at 80 K under nonresonant excitation conditions. Phys. Rev. B 64, 233318 (2001).

    Article  Google Scholar 

  31. Bulgarini, G. et al. Avalanche amplification of a single exciton in a semiconductor nanowire. Nature Photon. 6, 455–458 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank C. Aspetti for assistance with calculations. This work was supported by the US Army Research Office (grant no. W911NF-09-1-0477 and W911NF-11-1-0024) and the National Institutes of Health through the NIH Director's New Innovator Award Program (1-DP2-7251-01).

Author information

Authors and Affiliations

Authors

Contributions

B.P. was responsible for the growth of nanowires, device fabrication and optical measurements. C-H.C. was responsible for growth and surface passivation of nanowires. L.K.v.V. aided in project conception, together with B.P. and R.A. R.A. supervised the research work and performed data analysis with B.P. All authors discussed the results and contributed to preparation of the manuscript.

Corresponding author

Correspondence to Ritesh Agarwal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 693 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piccione, B., Cho, CH., van Vugt, L. et al. All-optical active switching in individual semiconductor nanowires. Nature Nanotech 7, 640–645 (2012). https://doi.org/10.1038/nnano.2012.144

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.144

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing