Letter | Published:

Structural analysis of strained quantum dots using nuclear magnetic resonance

Nature Nanotechnology volume 7, pages 646650 (2012) | Download Citation


Strained semiconductor nanostructures can be used to make single-photon sources1, detectors2 and photovoltaic devices3, and could potentially be used to create quantum logic devices4,5. The development of such applications requires techniques capable of nanoscale structural analysis, but the microscopy methods6,7,8 typically used to analyse these materials are destructive. NMR techniques can provide non-invasive structural analysis, but have been restricted to strain-free semiconductor nanostructures9,10,11 because of the significant strain-induced quadrupole broadening of the NMR spectra12,13,14. Here, we show that optically detected NMR spectroscopy can be used to analyse individual strained quantum dots. Our approach uses continuous-wave broadband radiofrequency excitation with a specially designed spectral pattern and can probe individual strained nanostructures containing only 1 × 105 quadrupole nuclear spins. With this technique, we are able to measure the strain distribution and chemical composition of quantum dots in the volume occupied by the single confined electron. The approach could also be used to address problems in quantum information processing such as the precise control of nuclear spins15,16,17 in the presence of strong quadrupole effects18,19,20,21.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    et al. An entangled-light-emitting diode. Nature 465, 594–597 (2010).

  2. 2.

    et al. Single photon emission and detection at the nanoscale utilizing semiconductor nanowires. J. Nanophoton. 5, 053502 (2011).

  3. 3.

    , & Single nanowire photovoltaics. Chem. Soc. Rev. 38, 16–24 (2009).

  4. 4.

    et al. A coherent single-hole spin in a semiconductor. Science 325, 70–72 (2009).

  5. 5.

    et al. Optically controlled locking of the nuclear field via coherent dark-state spectroscopy. Nature 459, 1105–1109 (2009).

  6. 6.

    et al. Scanning transmission-electron microscopy study of InAs/GaAs quantum dots. Phys. Rev. B 58, R10127–R10130 (1998).

  7. 7.

    et al. Imaging and probing electronic properties of self-assembled InAs quantum dots by atomic force microscopy with conductive tip. Appl. Phys. Lett. 74, 844–846 (1999).

  8. 8.

    , , . & Atom-resolved scanning tunneling microscopy of vertically ordered InAs quantum dots. Appl. Phys. Lett. 71, 1083–1085 (1997).

  9. 9.

    et al. Nuclear spectroscopy in single quantum dots: nanoscopic Raman scattering and nuclear magnetic resonance. Science 277, 85–88 (1997).

  10. 10.

    et al. Fast control of nuclear spin polarization in an optically pumped single quantum dot. Nature Mater. 10, 844–848 (2011).

  11. 11.

    et al. Optically tunable nuclear magnetic resonance in a single quantum dot. Phys. Rev. B 82, 161309 (2010).

  12. 12.

    et al. Application of static microcoils and WURST pulses for solid-state ultra-wideline NMR spectroscopy of quadrupolar nuclei. Chem. Phys. Lett. 466, 227–234 (2008).

  13. 13.

    , . & Sensitivity enhancement of NMR spectra of half-integer quadrupolar nuclei in the solid state via population transfer. Concepts Magn. Reson. A 26A, 47–61 (2005).

  14. 14.

    Quadrupolar spectra of nuclear spins in strained InxGa1–xAs quantum dots. Phys. Rev. B 85, 115313 (2012).

  15. 15.

    , & Electron spin decoherence in quantum dots due to interaction with nuclei. Phys. Rev. Lett. 88, 186802 (2002).

  16. 16.

    et al. Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 µs. Nature Phys. 7, 109–113 (2011).

  17. 17.

    , , , & Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization. Nature Phys. 5, 903–908 (2009).

  18. 18.

    , & Breakdown of the nuclear-spin-temperature approach in quantum-dot demagnetization experiments. Nature Phys. 5, 407–411 (2009).

  19. 19.

    , & Hyperfine interaction-dominated dynamics of nuclear spins in self-assembled InGaAs quantum dots. Phys. Rev. Lett. 107, 167401 (2011).

  20. 20.

    et al. Dynamic nuclear spin polarization in the resonant laser excitation of an InGaAs quantum dot. Phys. Rev. Lett. 108, 197403 (2012).

  21. 21.

    et al. Resonant nuclear spin pumping in (In,Ga)As quantum dots. Phys. Rev. B 84, 041304 (2011).

  22. 22.

    et al. Electron and nuclear spin interactions in the optical spectra of single GaAs quantum dots. Phys. Rev. Lett. 86, 5176–5179 (2001).

  23. 23.

    et al. Pumping of nuclear spins by optical excitation of spin-forbidden transitions in a quantum dot. Phys. Rev. Lett. 104, 066804 (2010).

  24. 24.

    The Principles of Nuclear Magnetism (Oxford Univ. Press, 1961).

  25. 25.

    in Encyclopedia of Nuclear Magnetic Resonance (eds Grant, D. M. & Harris, R. K.) 3838–3848 (Wiley, 1996).

  26. 26.

    , & InAs/GaAs pyramidal quantum dots: strain distribution, optical phonons, and electronic structure. Phys. Rev. B 52, 11969–11981 (1995).

  27. 27.

    Experimental gradient-elastic tensors and chemical bonding in IIIV semiconductors. Phys. Rev. B 10, 4244–4252 (1974).

  28. 28.

    et al. Structure of quantum dots as seen by excitonic spectroscopy versus structural characterization: using theory to close the loop. Phys. Rev. B 80, 165425 (2009).

  29. 29.

    & All-optical magnetic resonance in semiconductors. Science 287, 473–476 (2000).

  30. 30.

    et al. New type of electron nuclear-spin interaction from resistively detected NMR in the fractional quantum Hall effect regime. Phys. Rev. Lett. 82, 4070–4073 (1999).

Download references


This work was supported by the EPSRC Programme grants (EP/G001642/1 and EP/J007544/1), ITN Spin-Optronics and the Royal Society. J.P. was supported by a CONACYT-Mexico doctoral scholarship. The authors thank A.J. Ramsay and D.N. Krizhanovskii for fruitful discussion.

Author information


  1. Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK

    • E. A. Chekhovich
    • , J. Puebla
    • , M. S. Skolnick
    •  & A. I. Tartakovskii
  2. A. F. Ioffe Physico-Technical Institute, 194021, and Spin Optics Laboratory, St Petersburg State University, St Petersburg 198504, Russia

    • K. V. Kavokin
  3. Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S1 3JD, UK

    • A. B. Krysa
    •  & M. Hopkinson
  4. Hitachi Cambridge Laboratory, Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE, UK

    • A. D. Andreev
  5. Department of Physics, University of Warwick, Coventry CV4 7AL, UK

    • A. M. Sanchez
    •  & R. Beanland


  1. Search for E. A. Chekhovich in:

  2. Search for K. V. Kavokin in:

  3. Search for J. Puebla in:

  4. Search for A. B. Krysa in:

  5. Search for M. Hopkinson in:

  6. Search for A. D. Andreev in:

  7. Search for A. M. Sanchez in:

  8. Search for R. Beanland in:

  9. Search for M. S. Skolnick in:

  10. Search for A. I. Tartakovskii in:


A.B.K. and M.H. developed and grew the samples. A.M.S. and R.B. produced TEM images of quantum dots. J.P. processed the samples. E.A.C. and A.I.T. conceived the experiments. E.A.C. developed new techniques and carried out the experiments. E.A.C., K.V.K., A.D.A. and A.I.T. analysed the data. E.A.C., A.I.T. and M.S.S. wrote the manuscript with input from all authors.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to E. A. Chekhovich or A. I. Tartakovskii.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history






Further reading