Letter | Published:

Printing colour at the optical diffraction limit

Nature Nanotechnology volume 7, pages 557561 (2012) | Download Citation

Abstract

The highest possible resolution for printed colour images is determined by the diffraction limit of visible light. To achieve this limit, individual colour elements (or pixels) with a pitch of 250 nm are required, translating into printed images at a resolution of 100,000 dots per inch (d.p.i.). However, methods for dispensing multiple colourants or fabricating structural colour through plasmonic structures have insufficient resolution and limited scalability1,2,3,4,5,6. Here, we present a non-colourant method that achieves bright-field colour prints with resolutions up to the optical diffraction limit. Colour information is encoded in the dimensional parameters of metal nanostructures, so that tuning their plasmon resonance determines the colours of the individual pixels. Our colour-mapping strategy produces images with both sharp colour changes and fine tonal variations, is amenable to large-volume colour printing via nanoimprint lithography7,8, and could be useful in making microimages for security, steganography9, nanoscale optical filters6,10,11,12 and high-density spectrally encoded optical data storage.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. 3D bulk ordering in macroscopic solid opaline films by edge-induced rotational shearing. Adv. Mater. 23, 1540–1544 (2011).

  2. 2.

    , & Inkjet printing of light emitting quantum dots. Appl. Phys. Lett. 94, 073108 (2009).

  3. 3.

    et al. Full-colour quantum dot displays fabricated by transfer printing. Nature Photon. 5, 176–182 (2011).

  4. 4.

    et al. Plasmon-enhanced structural coloration of metal films with isotropic pinwheel nanoparticle arrays. Opt. Express 19, 23818–23830 (2011).

  5. 5.

    , & Surface-plasmon holography with white-light illumination. Science 332, 218–220 (2011).

  6. 6.

    , , , & Structural colors: from plasmonic to carbon nanostructures. Small 7, 3128–3136 (2011).

  7. 7.

    & High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates. Adv. Mater. 20, 2044–2049 (2008).

  8. 8.

    , , , & Mimicking domino-like photonic nanostructures on butterfly wings. Small 5, 574–578 (2009).

  9. 9.

    Optical and Digital Techniques for Information Security (Springer, 2005).

  10. 10.

    & High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films. Opt. Express 18, 14056–14062 (2010).

  11. 11.

    et al. Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes. Appl. Phys. Lett. 98, 093113 (2011).

  12. 12.

    , , & Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nature Commun. 1, 1–5 (2010).

  13. 13.

    A contribution to the theory of the microscope and the nature of microscopic vision. Proc. Bristol Nat. Soc. 1, 200–261 (1874).

  14. 14.

    , & Controlled replication of butterfly wings for achieving tunable photonic properties. Nano Lett. 6, 2325–2331 (2006).

  15. 15.

    et al. Polymer pen lithography. Science 321, 1658–1660 (2008).

  16. 16.

    , , , & ‘Dip-pen’ nanolithography. Science 283, 661–663 (1999).

  17. 17.

    , & Chromatic plasmonic polarizers for active visible color filtering and polarimetry. Nano Lett. 12, 1026–1031 (2012).

  18. 18.

    , , & Plasmonic photon sorters for spectral and polarimetric imaging. Nature Photon. 2, 161–164 (2008).

  19. 19.

    & Microscopic theory of the extraordinary optical transmission. Nature 452, 728–731 (2008).

  20. 20.

    et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nature Mater. 9, 707–715 (2010).

  21. 21.

    , , , & Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998).

  22. 22.

    , , & Three-dimensional cavity nanoantenna coupled plasmonic nanodots for ultrahigh and uniform surface-enhanced Raman scattering over large area. Opt. Express 19, 3925–3936 (2011).

  23. 23.

    , & Extraordinary light transmission through opaque thin metal film with subwavelength holes blocked by metal disks. Opt. Express 19, 21098–21108 (2011).

  24. 24.

    et al. Optically tunable plasmonic color filters. Appl. Phys. A 107, 49–54 (2011).

  25. 25.

    et al. Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors. ACS Nano 5, 4046–4055 (2011).

  26. 26.

    et al. Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals. Nature Commun. 2, 1–7 (2011).

  27. 27.

    , , , & Efficient disc on pillar substrates for surface enhanced Raman spectroscopy. Chem. Commun. 47, 3814–3816 (2011).

  28. 28.

    Plasmonics: Fundamentals and Applications (Springer, 2007).

  29. 29.

    , , & Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B 110, 7238–7248 (2006).

  30. 30.

    Contributions to the optical characteristis of turbid tubes, particularly of colloidal metal solutions (beitraege zur optik trueber Medien, speziell kolloidaler Metalloesungen). Ann. Phys. 25, 377–445 (1908).

  31. 31.

    , , , & Miniaturization of grayscale images. J. Vac. Sci. Technol. B 29, 06F313 (2011).

  32. 32.

    & Using high-contrast salty development of hydrogen silsesquioxane for sub-10-nm half-pitch lithography. J. Vac. Sci. Technol., B 25, 2025–2029 (2007).

  33. 33.

    Handbook of Optical Constants of Solids Vol. 1, 386–350 (Elsevier, 1998).

Download references

Acknowledgements

This work was supported by the Agency for Science, Technology and Research (A*STAR) Young Investigatorship (grant no. 0926030138) and SERC (grant no. 092154099). The work made use of the SERC nano Fabrication, Processing and Characterization (SnFPC) facilities in IMRE. The authors thank S.H. Goh, I.Y. Phang, J. Deng and V.S.F. Lim for technical assistance, and M. Asbahi, M. Bosman, W.P. Goh and K.T.P. Lim (IMRE) and K.K. Berggren (MIT) for fruitful discussions.

Author information

Author notes

    • Karthik Kumar
    •  & Huigao Duan

    These authors contributed equally to this work

Affiliations

  1. Institute of Materials Research and Engineering, A*STAR, 3 Research Link, Singapore 117602

    • Karthik Kumar
    • , Huigao Duan
    • , Samuel C. W. Koh
    • , Jennifer N. Wei
    •  & Joel K. W. Yang
  2. Institute of High Performance Computing, A*STAR, 1 Fusionopolis Way, Singapore 138632

    • Ravi S. Hegde

Authors

  1. Search for Karthik Kumar in:

  2. Search for Huigao Duan in:

  3. Search for Ravi S. Hegde in:

  4. Search for Samuel C. W. Koh in:

  5. Search for Jennifer N. Wei in:

  6. Search for Joel K. W. Yang in:

Contributions

K.K., H.D. and J.K.W.Y. conceived the ideas and designed the experiments. K.K., H.D. and J.K.W.Y. fabricated and characterized the samples. R.S.H., S.C.W.K. and J.N.W. performed numerical simulations. All authors analysed the data and wrote the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Joel K. W. Yang.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nnano.2012.128

Further reading